Step |
Hyp |
Ref |
Expression |
1 |
|
lo1bdd2.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
lo1bdd2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
lo1bdd2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
lo1bdd2.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
5 |
|
lo1bdd2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) |
6 |
|
lo1bdd2.6 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) |
7 |
1 3 2
|
ello1mpt2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ↔ ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) |
8 |
4 7
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) |
9 |
|
elicopnf |
⊢ ( 𝐶 ∈ ℝ → ( 𝑦 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ) |
11 |
10
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) |
12 |
11 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → 𝑀 ∈ ℝ ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) ∧ 𝑛 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
14 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) ∧ ¬ 𝑛 ≤ 𝑀 ) → 𝑛 ∈ ℝ ) |
15 |
13 14
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) |
16 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
17 |
16
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
18 |
11
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
20 |
17 19
|
ltnled |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
21 |
6
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
22 |
21
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
23 |
11 22
|
syldanl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ 𝑀 ) ) |
25 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
26 |
12
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ∈ ℝ ) |
27 |
|
max2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
29 |
3
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
30 |
12
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑛 ≤ 𝑀 ) → 𝑀 ∈ ℝ ) |
31 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑛 ≤ 𝑀 ) → 𝑛 ∈ ℝ ) |
32 |
30 31
|
ifclda |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) |
33 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
34 |
29 26 32 33
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑀 ∧ 𝑀 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
35 |
28 34
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑀 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
36 |
24 35
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 < 𝑦 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
37 |
20 36
|
sylbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑦 ≤ 𝑥 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
38 |
|
max1 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
39 |
25 26 38
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
40 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
41 |
29 25 32 40
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
42 |
39 41
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
43 |
37 42
|
jad |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
44 |
43
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) ) |
45 |
44
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) |
46 |
|
brralrspcev |
⊢ ( ( if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ if ( 𝑛 ≤ 𝑀 , 𝑀 , 𝑛 ) ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
47 |
15 45 46
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ ( 𝑛 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) ) ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
48 |
47
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
49 |
48
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐶 [,) +∞ ) ) → ( ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
50 |
49
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐶 [,) +∞ ) ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( 𝑦 ≤ 𝑥 → 𝐵 ≤ 𝑛 ) → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
51 |
8 50
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |