Step |
Hyp |
Ref |
Expression |
1 |
|
lo1bdd2.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
lo1bdd2.2 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
3 |
|
lo1bdd2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
lo1bdd2.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
5 |
|
lo1bdd2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ) → 𝑀 ∈ ℝ ) |
6 |
|
lo1bdd2.6 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵 ≤ 𝑀 ) |
7 |
1 2 3 4 5 6
|
lo1bdd2 |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 𝑛 ∈ ℂ ) |
10 |
9
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
11 |
9
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → 0 ≤ ( abs ‘ 𝑛 ) ) |
12 |
10 11
|
ge0p1rpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ ) |
13 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ∈ ℝ ) |
14 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝑛 ) ∈ ℝ ) |
15 |
|
peano2re |
⊢ ( ( abs ‘ 𝑛 ) ∈ ℝ → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
17 |
13
|
leabsd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ ( abs ‘ 𝑛 ) ) |
18 |
14
|
lep1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝑛 ) ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) |
19 |
13 14 16 17 18
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) |
20 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
21 |
|
letr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
22 |
20 13 16 21
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ≤ 𝑛 ∧ 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
23 |
19 22
|
mpan2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ≤ 𝑛 → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
24 |
23
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) ) |
25 |
|
brralrspcev |
⊢ ( ( ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |
26 |
12 24 25
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
27 |
26
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑛 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) ) |
28 |
7 27
|
mpd |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ+ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑚 ) |