Metamath Proof Explorer


Theorem lo1bddrp

Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypotheses lo1bdd2.1 ( 𝜑𝐴 ⊆ ℝ )
lo1bdd2.2 ( 𝜑𝐶 ∈ ℝ )
lo1bdd2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
lo1bdd2.4 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )
lo1bdd2.5 ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶𝑦 ) ) → 𝑀 ∈ ℝ )
lo1bdd2.6 ( ( ( 𝜑𝑥𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵𝑀 )
Assertion lo1bddrp ( 𝜑 → ∃ 𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚 )

Proof

Step Hyp Ref Expression
1 lo1bdd2.1 ( 𝜑𝐴 ⊆ ℝ )
2 lo1bdd2.2 ( 𝜑𝐶 ∈ ℝ )
3 lo1bdd2.3 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
4 lo1bdd2.4 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )
5 lo1bdd2.5 ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ ∧ 𝐶𝑦 ) ) → 𝑀 ∈ ℝ )
6 lo1bdd2.6 ( ( ( 𝜑𝑥𝐴 ) ∧ ( ( 𝑦 ∈ ℝ ∧ 𝐶𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝐵𝑀 )
7 1 2 3 4 5 6 lo1bdd2 ( 𝜑 → ∃ 𝑛 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑛 )
8 simpr ( ( 𝜑𝑛 ∈ ℝ ) → 𝑛 ∈ ℝ )
9 8 recnd ( ( 𝜑𝑛 ∈ ℝ ) → 𝑛 ∈ ℂ )
10 9 abscld ( ( 𝜑𝑛 ∈ ℝ ) → ( abs ‘ 𝑛 ) ∈ ℝ )
11 9 absge0d ( ( 𝜑𝑛 ∈ ℝ ) → 0 ≤ ( abs ‘ 𝑛 ) )
12 10 11 ge0p1rpd ( ( 𝜑𝑛 ∈ ℝ ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ )
13 simplr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝑛 ∈ ℝ )
14 10 adantr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( abs ‘ 𝑛 ) ∈ ℝ )
15 peano2re ( ( abs ‘ 𝑛 ) ∈ ℝ → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ )
16 14 15 syl ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ )
17 13 leabsd ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝑛 ≤ ( abs ‘ 𝑛 ) )
18 14 lep1d ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( abs ‘ 𝑛 ) ≤ ( ( abs ‘ 𝑛 ) + 1 ) )
19 13 14 16 17 18 letrd ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) )
20 3 adantlr ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ℝ )
21 letr ( ( 𝐵 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ ) → ( ( 𝐵𝑛𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) )
22 20 13 16 21 syl3anc ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( ( 𝐵𝑛𝑛 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) )
23 19 22 mpan2d ( ( ( 𝜑𝑛 ∈ ℝ ) ∧ 𝑥𝐴 ) → ( 𝐵𝑛𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) )
24 23 ralimdva ( ( 𝜑𝑛 ∈ ℝ ) → ( ∀ 𝑥𝐴 𝐵𝑛 → ∀ 𝑥𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) )
25 brralrspcev ( ( ( ( abs ‘ 𝑛 ) + 1 ) ∈ ℝ+ ∧ ∀ 𝑥𝐴 𝐵 ≤ ( ( abs ‘ 𝑛 ) + 1 ) ) → ∃ 𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚 )
26 12 24 25 syl6an ( ( 𝜑𝑛 ∈ ℝ ) → ( ∀ 𝑥𝐴 𝐵𝑛 → ∃ 𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚 ) )
27 26 rexlimdva ( 𝜑 → ( ∃ 𝑛 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑛 → ∃ 𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚 ) )
28 7 27 mpd ( 𝜑 → ∃ 𝑚 ∈ ℝ+𝑥𝐴 𝐵𝑚 )