Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | lo1const | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
2 | simplr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
3 | simpr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
4 | leid | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ 𝐵 ) | |
5 | 4 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ≤ 𝑥 ) ) → 𝐵 ≤ 𝐵 ) |
6 | 1 2 3 3 5 | ello1d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |