Metamath Proof Explorer


Theorem lo1const

Description: A constant function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1const ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ⊆ ℝ )
2 simplr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 simpr ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
4 leid ( 𝐵 ∈ ℝ → 𝐵𝐵 )
5 4 ad2antlr ( ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝑥𝐴𝐵𝑥 ) ) → 𝐵𝐵 )
6 1 2 3 3 5 ello1d ( ( 𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥𝐴𝐵 ) ∈ ≤𝑂(1) )