| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1add2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | o1add2.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 3 |  | lo1add.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1) ) | 
						
							| 4 |  | lo1add.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1) ) | 
						
							| 5 |  | lo1mul.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 6 |  | reeanv | ⊢ ( ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) )  ↔  ( ∃ 𝑚  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑛  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) | 
						
							| 7 | 1 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉 ) | 
						
							| 8 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝐴 𝐵  ∈  𝑉  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  =  𝐴 ) | 
						
							| 10 |  | lo1dm | ⊢ ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ⊆  ℝ ) | 
						
							| 12 | 9 11 | eqsstrrd | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 14 |  | rexanre | ⊢ ( 𝐴  ⊆  ℝ  →  ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  ↔  ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  ↔  ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  𝑚  ∈  ℝ ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  𝑛  ∈  ℝ ) | 
						
							| 18 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 19 |  | ifcl | ⊢ ( ( 𝑛  ∈  ℝ  ∧  0  ∈  ℝ )  →  if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ ) | 
						
							| 20 | 17 18 19 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ ) | 
						
							| 21 | 16 20 | remulcld | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  ∈  ℝ ) | 
						
							| 22 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝑛  ∈  ℝ ) | 
						
							| 23 |  | max2 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  𝑛  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) | 
						
							| 24 | 18 22 23 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝑛  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) | 
						
							| 25 | 2 4 | lo1mptrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 27 | 22 18 19 | sylancl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ ) | 
						
							| 28 |  | letr | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑛  ∈  ℝ  ∧  if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ )  →  ( ( 𝐶  ≤  𝑛  ∧  𝑛  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  𝐶  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) | 
						
							| 29 | 26 22 27 28 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐶  ≤  𝑛  ∧  𝑛  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  𝐶  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) | 
						
							| 30 | 24 29 | mpan2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ≤  𝑛  →  𝐶  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) | 
						
							| 31 | 1 3 | lo1mptrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 33 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 34 | 32 33 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 35 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝑚  ∈  ℝ ) | 
						
							| 36 |  | max1 | ⊢ ( ( 0  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  0  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) | 
						
							| 37 | 18 22 36 | sylancr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  0  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) | 
						
							| 38 | 27 37 | jca | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) | 
						
							| 39 |  | lemul12b | ⊢ ( ( ( ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 )  ∧  𝑚  ∈  ℝ )  ∧  ( 𝐶  ∈  ℝ  ∧  ( if ( 0  ≤  𝑛 ,  𝑛 ,  0 )  ∈  ℝ  ∧  0  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) )  →  ( ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) | 
						
							| 40 | 34 35 26 38 39 | syl22anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) | 
						
							| 41 | 30 40 | sylan2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 )  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) | 
						
							| 42 | 41 | imim2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  →  ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) ) | 
						
							| 43 | 42 | ralimdva | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  →  ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) ) | 
						
							| 44 |  | breq2 | ⊢ ( 𝑝  =  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  ( ( 𝐵  ·  𝐶 )  ≤  𝑝  ↔  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) | 
						
							| 45 | 44 | imbi2d | ⊢ ( 𝑝  =  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  ( ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 )  ↔  ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) ) | 
						
							| 46 | 45 | ralbidv | ⊢ ( 𝑝  =  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) ) ) | 
						
							| 47 | 46 | rspcev | ⊢ ( ( ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) )  ∈  ℝ  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  ( 𝑚  ·  if ( 0  ≤  𝑛 ,  𝑛 ,  0 ) ) ) )  →  ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) | 
						
							| 48 | 21 43 47 | syl6an | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  →  ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 49 | 48 | reximdv | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ≤  𝑚  ∧  𝐶  ≤  𝑛 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 50 | 15 49 | sylbird | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℝ  ∧  𝑛  ∈  ℝ ) )  →  ( ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 51 | 50 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℝ ∃ 𝑛  ∈  ℝ ( ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 52 | 6 51 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑚  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑛  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 53 | 12 31 | ello1mpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 54 |  | rexcom | ⊢ ( ∃ 𝑐  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) | 
						
							| 55 | 53 54 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑚  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 ) ) ) | 
						
							| 56 | 12 25 | ello1mpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) | 
						
							| 57 |  | rexcom | ⊢ ( ∃ 𝑐  ∈  ℝ ∃ 𝑛  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 )  ↔  ∃ 𝑛  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) | 
						
							| 58 | 56 57 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑛  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) | 
						
							| 59 | 55 58 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1) )  ↔  ( ∃ 𝑚  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐵  ≤  𝑚 )  ∧  ∃ 𝑛  ∈  ℝ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  𝐶  ≤  𝑛 ) ) ) ) | 
						
							| 60 | 31 25 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐵  ·  𝐶 )  ∈  ℝ ) | 
						
							| 61 | 12 60 | ello1mpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐵  ·  𝐶 ) )  ∈  ≤𝑂(1)  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑝  ∈  ℝ ∀ 𝑥  ∈  𝐴 ( 𝑐  ≤  𝑥  →  ( 𝐵  ·  𝐶 )  ≤  𝑝 ) ) ) | 
						
							| 62 | 52 59 61 | 3imtr4d | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1)  ∧  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1) )  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  ·  𝐶 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 63 | 3 4 62 | mp2and | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  ·  𝐶 ) )  ∈  ≤𝑂(1) ) |