| Step | Hyp | Ref | Expression | 
						
							| 1 |  | o1add2.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  𝑉 ) | 
						
							| 2 |  | o1add2.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝑉 ) | 
						
							| 3 |  | lo1add.3 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐵 )  ∈  ≤𝑂(1) ) | 
						
							| 4 |  | lo1add.4 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  ∈  ≤𝑂(1) ) | 
						
							| 5 |  | lo1mul.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 6 | 2 4 | lo1mptrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 8 | 1 3 | lo1mptrcl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 7 9 | mulcomd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐶  ·  𝐵 )  =  ( 𝐵  ·  𝐶 ) ) | 
						
							| 11 | 10 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  ·  𝐶 ) ) ) | 
						
							| 12 | 1 2 3 4 5 | lo1mul | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐵  ·  𝐶 ) )  ∈  ≤𝑂(1) ) | 
						
							| 13 | 11 12 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  ·  𝐵 ) )  ∈  ≤𝑂(1) ) |