Step |
Hyp |
Ref |
Expression |
1 |
|
o1dm |
⊢ ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ ) |
2 |
|
fdm |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) |
3 |
2
|
sseq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
4 |
1 3
|
syl5ib |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ ) ) |
5 |
|
lo1dm |
⊢ ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → dom ( abs ∘ 𝐹 ) ⊆ ℝ ) |
6 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
7 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
8 |
6 7
|
mpan |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
9 |
8
|
fdmd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom ( abs ∘ 𝐹 ) = 𝐴 ) |
10 |
9
|
sseq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( dom ( abs ∘ 𝐹 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) ) |
11 |
5 10
|
syl5ib |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ ) ) |
12 |
|
fvco3 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
13 |
12
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
14 |
13
|
breq1d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
15 |
14
|
imbi2d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
16 |
15
|
ralbidva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
17 |
16
|
2rexbidv |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
18 |
|
ello12 |
⊢ ( ( ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
19 |
8 18
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) ) |
20 |
|
elo12 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑦 → ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) ) |
21 |
17 19 20
|
3bitr4rd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |
22 |
21
|
ex |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ⊆ ℝ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) ) |
23 |
4 11 22
|
pm5.21ndd |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) |