Metamath Proof Explorer


Theorem lo1o1

Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1o1 ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) )

Proof

Step Hyp Ref Expression
1 o1dm ( 𝐹 ∈ 𝑂(1) → dom 𝐹 ⊆ ℝ )
2 fdm ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 )
3 2 sseq1d ( 𝐹 : 𝐴 ⟶ ℂ → ( dom 𝐹 ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) )
4 1 3 syl5ib ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) → 𝐴 ⊆ ℝ ) )
5 lo1dm ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → dom ( abs ∘ 𝐹 ) ⊆ ℝ )
6 absf abs : ℂ ⟶ ℝ
7 fco ( ( abs : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
8 6 7 mpan ( 𝐹 : 𝐴 ⟶ ℂ → ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ )
9 8 fdmd ( 𝐹 : 𝐴 ⟶ ℂ → dom ( abs ∘ 𝐹 ) = 𝐴 )
10 9 sseq1d ( 𝐹 : 𝐴 ⟶ ℂ → ( dom ( abs ∘ 𝐹 ) ⊆ ℝ ↔ 𝐴 ⊆ ℝ ) )
11 5 10 syl5ib ( 𝐹 : 𝐴 ⟶ ℂ → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) → 𝐴 ⊆ ℝ ) )
12 fvco3 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑦𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹𝑦 ) ) )
13 12 adantlr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦𝐴 ) → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ ( 𝐹𝑦 ) ) )
14 13 breq1d ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦𝐴 ) → ( ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) )
15 14 imbi2d ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦𝐴 ) → ( ( 𝑥𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ( 𝑥𝑦 → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) ) )
16 15 ralbidva ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∀ 𝑦𝐴 ( 𝑥𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) ) )
17 16 2rexbidv ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) ) )
18 ello12 ( ( ( abs ∘ 𝐹 ) : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) )
19 8 18 sylan ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( ( abs ∘ 𝐹 ) ‘ 𝑦 ) ≤ 𝑚 ) ) )
20 elo12 ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦𝐴 ( 𝑥𝑦 → ( abs ‘ ( 𝐹𝑦 ) ) ≤ 𝑚 ) ) )
21 17 19 20 3bitr4rd ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) )
22 21 ex ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐴 ⊆ ℝ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) ) )
23 4 11 22 pm5.21ndd ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ∈ 𝑂(1) ↔ ( abs ∘ 𝐹 ) ∈ ≤𝑂(1) ) )