| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lo1f | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  𝐹 : dom  𝐹 ⟶ ℝ ) | 
						
							| 2 |  | lo1bdd | ⊢ ( ( 𝐹  ∈  ≤𝑂(1)  ∧  𝐹 : dom  𝐹 ⟶ ℝ )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 3 | 1 2 | mpdan | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 4 |  | inss1 | ⊢ ( dom  𝐹  ∩  𝐴 )  ⊆  dom  𝐹 | 
						
							| 5 |  | ssralv | ⊢ ( ( dom  𝐹  ∩  𝐴 )  ⊆  dom  𝐹  →  ( ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 )  →  ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ ( ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 )  →  ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 7 |  | elinel2 | ⊢ ( 𝑦  ∈  ( dom  𝐹  ∩  𝐴 )  →  𝑦  ∈  𝐴 ) | 
						
							| 8 | 7 | fvresd | ⊢ ( 𝑦  ∈  ( dom  𝐹  ∩  𝐴 )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑦 ) ) | 
						
							| 9 | 8 | breq1d | ⊢ ( 𝑦  ∈  ( dom  𝐹  ∩  𝐴 )  →  ( ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚  ↔  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 10 | 9 | imbi2d | ⊢ ( 𝑦  ∈  ( dom  𝐹  ∩  𝐴 )  →  ( ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 )  ↔  ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 11 | 10 | ralbiia | ⊢ ( ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 )  ↔  ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 12 | 6 11 | sylibr | ⊢ ( ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 )  →  ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 13 | 12 | reximi | ⊢ ( ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 )  →  ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 14 | 13 | reximi | ⊢ ( ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  dom  𝐹 ( 𝑥  ≤  𝑦  →  ( 𝐹 ‘ 𝑦 )  ≤  𝑚 )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) | 
						
							| 16 |  | fssres | ⊢ ( ( 𝐹 : dom  𝐹 ⟶ ℝ  ∧  ( dom  𝐹  ∩  𝐴 )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐴 ) ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 17 | 1 4 16 | sylancl | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐴 ) ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 18 |  | resres | ⊢ ( ( 𝐹  ↾  dom  𝐹 )  ↾  𝐴 )  =  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐴 ) ) | 
						
							| 19 |  | ffn | ⊢ ( 𝐹 : dom  𝐹 ⟶ ℝ  →  𝐹  Fn  dom  𝐹 ) | 
						
							| 20 |  | fnresdm | ⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝐹  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 21 | 1 19 20 | 3syl | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  dom  𝐹 )  =  𝐹 ) | 
						
							| 22 | 21 | reseq1d | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( ( 𝐹  ↾  dom  𝐹 )  ↾  𝐴 )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 23 | 18 22 | eqtr3id | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  ( dom  𝐹  ∩  𝐴 ) )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 24 | 23 | feq1d | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( ( 𝐹  ↾  ( dom  𝐹  ∩  𝐴 ) ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ  ↔  ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) ) | 
						
							| 25 | 17 24 | mpbid | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ ) | 
						
							| 26 |  | lo1dm | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  dom  𝐹  ⊆  ℝ ) | 
						
							| 27 | 4 26 | sstrid | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( dom  𝐹  ∩  𝐴 )  ⊆  ℝ ) | 
						
							| 28 |  | ello12 | ⊢ ( ( ( 𝐹  ↾  𝐴 ) : ( dom  𝐹  ∩  𝐴 ) ⟶ ℝ  ∧  ( dom  𝐹  ∩  𝐴 )  ⊆  ℝ )  →  ( ( 𝐹  ↾  𝐴 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 29 | 25 27 28 | syl2anc | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( ( 𝐹  ↾  𝐴 )  ∈  ≤𝑂(1)  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑚  ∈  ℝ ∀ 𝑦  ∈  ( dom  𝐹  ∩  𝐴 ) ( 𝑥  ≤  𝑦  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑦 )  ≤  𝑚 ) ) ) | 
						
							| 30 | 15 29 | mpbird | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  𝐴 )  ∈  ≤𝑂(1) ) |