| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lo1resb.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 2 |  | lo1resb.2 | ⊢ ( 𝜑  →  𝐴  ⊆  ℝ ) | 
						
							| 3 |  | lo1resb.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | lo1res | ⊢ ( 𝐹  ∈  ≤𝑂(1)  →  ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  ∈  ≤𝑂(1) ) | 
						
							| 5 | 1 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 6 | 5 | reseq1d | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  =  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( 𝐵 [,) +∞ ) ) ) | 
						
							| 7 |  | resmpt3 | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  ↾  ( 𝐵 [,) +∞ ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝜑  →  ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  =  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  ∈  ≤𝑂(1)  ↔  ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ≤𝑂(1) ) ) | 
						
							| 10 |  | inss1 | ⊢ ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ⊆  𝐴 | 
						
							| 11 | 10 2 | sstrid | ⊢ ( 𝜑  →  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ⊆  ℝ ) | 
						
							| 12 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 13 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 14 | 1 12 13 | syl2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 15 | 11 14 | ello1mpt | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ≤𝑂(1)  ↔  ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) ) ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 16 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐵 [,) +∞ ) ) ) | 
						
							| 17 | 16 | imbi1i | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐵 [,) +∞ ) )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 18 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ∈  ( 𝐵 [,) +∞ ) )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) ) | 
						
							| 19 | 17 18 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) ) | 
						
							| 20 |  | impexp | ⊢ ( ( ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ∧  𝑦  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  ↔  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 21 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 22 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  𝐴  ⊆  ℝ ) | 
						
							| 23 | 22 | sselda | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ℝ ) | 
						
							| 24 |  | elicopnf | ⊢ ( 𝐵  ∈  ℝ  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐵  ≤  𝑥 ) ) ) | 
						
							| 25 | 24 | baibd | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ↔  𝐵  ≤  𝑥 ) ) | 
						
							| 26 | 21 23 25 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ↔  𝐵  ≤  𝑥 ) ) | 
						
							| 27 | 26 | anbi1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ∧  𝑦  ≤  𝑥 )  ↔  ( 𝐵  ≤  𝑥  ∧  𝑦  ≤  𝑥 ) ) ) | 
						
							| 28 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  𝑦  ∈  ℝ ) | 
						
							| 29 |  | maxle | ⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  ↔  ( 𝐵  ≤  𝑥  ∧  𝑦  ≤  𝑥 ) ) ) | 
						
							| 30 | 21 28 23 29 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  ↔  ( 𝐵  ≤  𝑥  ∧  𝑦  ≤  𝑥 ) ) ) | 
						
							| 31 | 27 30 | bitr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ∧  𝑦  ≤  𝑥 )  ↔  if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥 ) ) | 
						
							| 32 | 31 | imbi1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 𝑥  ∈  ( 𝐵 [,) +∞ )  ∧  𝑦  ≤  𝑥 )  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  ↔  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 33 | 20 32 | bitr3id | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝑥  ∈  ( 𝐵 [,) +∞ )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  ↔  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 34 | 33 | pm5.74da | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  ( 𝐵 [,) +∞ )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) )  ↔  ( 𝑥  ∈  𝐴  →  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) ) | 
						
							| 35 | 19 34 | bitrid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  →  ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) ) | 
						
							| 36 | 35 | ralbidv2 | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) ) ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  ↔  ∀ 𝑥  ∈  𝐴 ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) ) ) | 
						
							| 37 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  𝐹 : 𝐴 ⟶ ℝ ) | 
						
							| 38 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 39 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  𝐵  ∈  ℝ ) | 
						
							| 40 | 38 39 | ifcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ∈  ℝ ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  𝑧  ∈  ℝ ) | 
						
							| 42 |  | ello12r | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ∀ 𝑥  ∈  𝐴 ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 ) )  →  𝐹  ∈  ≤𝑂(1) ) | 
						
							| 43 | 42 | 3expia | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ  ∧  𝐴  ⊆  ℝ )  ∧  ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  𝐴 ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 44 | 37 22 40 41 43 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  𝐴 ( if ( 𝐵  ≤  𝑦 ,  𝑦 ,  𝐵 )  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 45 | 36 44 | sylbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( ∀ 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) ) ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 46 | 45 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  ℝ ∃ 𝑧  ∈  ℝ ∀ 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) ) ( 𝑦  ≤  𝑥  →  ( 𝐹 ‘ 𝑥 )  ≤  𝑧 )  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 47 | 15 46 | sylbid | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 𝐴  ∩  ( 𝐵 [,) +∞ ) )  ↦  ( 𝐹 ‘ 𝑥 ) )  ∈  ≤𝑂(1)  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 48 | 9 47 | sylbid | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  ∈  ≤𝑂(1)  →  𝐹  ∈  ≤𝑂(1) ) ) | 
						
							| 49 | 4 48 | impbid2 | ⊢ ( 𝜑  →  ( 𝐹  ∈  ≤𝑂(1)  ↔  ( 𝐹  ↾  ( 𝐵 [,) +∞ ) )  ∈  ≤𝑂(1) ) ) |