Step |
Hyp |
Ref |
Expression |
1 |
|
lo1sub.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
lo1sub.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
3 |
|
lo1sub.3 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ ≤𝑂(1) ) |
4 |
|
lo1sub.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ) |
5 |
1 3
|
lo1mptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
7 |
2
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
8 |
6 7
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
9 |
8
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) |
10 |
2
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℝ ) |
11 |
2
|
o1lo1 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) ) ) ) |
12 |
4 11
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ≤𝑂(1) ∧ ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) ) ) |
13 |
12
|
simprd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ ≤𝑂(1) ) |
14 |
5 10 3 13
|
lo1add |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ ≤𝑂(1) ) |
15 |
9 14
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ ≤𝑂(1) ) |