| Step | Hyp | Ref | Expression | 
						
							| 1 |  | locfincf.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | topontop | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  →  𝐾  ∈  Top ) | 
						
							| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  𝐾  ∈  Top ) | 
						
							| 4 |  | toponuni | ⊢ ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐾 ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  𝑋  =  ∪  𝐾 ) | 
						
							| 6 |  | eqid | ⊢ ∪  𝑥  =  ∪  𝑥 | 
						
							| 7 | 1 6 | locfinbas | ⊢ ( 𝑥  ∈  ( LocFin ‘ 𝐽 )  →  𝑋  =  ∪  𝑥 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  𝑋  =  ∪  𝑥 ) | 
						
							| 9 | 5 8 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  ∪  𝐾  =  ∪  𝑥 ) | 
						
							| 10 | 5 | eleq2d | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  ( 𝑦  ∈  𝑋  ↔  𝑦  ∈  ∪  𝐾 ) ) | 
						
							| 11 | 1 | locfinnei | ⊢ ( ( 𝑥  ∈  ( LocFin ‘ 𝐽 )  ∧  𝑦  ∈  𝑋 )  →  ∃ 𝑛  ∈  𝐽 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝑥  ∈  ( LocFin ‘ 𝐽 )  →  ( 𝑦  ∈  𝑋  →  ∃ 𝑛  ∈  𝐽 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 13 |  | ssrexv | ⊢ ( 𝐽  ⊆  𝐾  →  ( ∃ 𝑛  ∈  𝐽 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin )  →  ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  →  ( ∃ 𝑛  ∈  𝐽 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin )  →  ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 15 | 12 14 | sylan9r | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  ( 𝑦  ∈  𝑋  →  ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 16 | 10 15 | sylbird | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  ( 𝑦  ∈  ∪  𝐾  →  ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 17 | 16 | ralrimiv | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  ∀ 𝑦  ∈  ∪  𝐾 ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) | 
						
							| 18 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 19 | 18 6 | islocfin | ⊢ ( 𝑥  ∈  ( LocFin ‘ 𝐾 )  ↔  ( 𝐾  ∈  Top  ∧  ∪  𝐾  =  ∪  𝑥  ∧  ∀ 𝑦  ∈  ∪  𝐾 ∃ 𝑛  ∈  𝐾 ( 𝑦  ∈  𝑛  ∧  { 𝑠  ∈  𝑥  ∣  ( 𝑠  ∩  𝑛 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 20 | 3 9 17 19 | syl3anbrc | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  ( LocFin ‘ 𝐽 ) )  →  𝑥  ∈  ( LocFin ‘ 𝐾 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  →  ( 𝑥  ∈  ( LocFin ‘ 𝐽 )  →  𝑥  ∈  ( LocFin ‘ 𝐾 ) ) ) | 
						
							| 22 | 21 | ssrdv | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐽  ⊆  𝐾 )  →  ( LocFin ‘ 𝐽 )  ⊆  ( LocFin ‘ 𝐾 ) ) |