| Step | Hyp | Ref | Expression | 
						
							| 1 |  | locfindis.1 | ⊢ 𝑌  =  ∪  𝐶 | 
						
							| 2 |  | lfinpfin | ⊢ ( 𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 )  →  𝐶  ∈  PtFin ) | 
						
							| 3 |  | unipw | ⊢ ∪  𝒫  𝑋  =  𝑋 | 
						
							| 4 | 3 | eqcomi | ⊢ 𝑋  =  ∪  𝒫  𝑋 | 
						
							| 5 | 4 1 | locfinbas | ⊢ ( 𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 )  →  𝑋  =  𝑌 ) | 
						
							| 6 | 2 5 | jca | ⊢ ( 𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 )  →  ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  𝑋  =  𝑌 ) | 
						
							| 8 |  | uniexg | ⊢ ( 𝐶  ∈  PtFin  →  ∪  𝐶  ∈  V ) | 
						
							| 9 | 1 8 | eqeltrid | ⊢ ( 𝐶  ∈  PtFin  →  𝑌  ∈  V ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  𝑌  ∈  V ) | 
						
							| 11 | 7 10 | eqeltrd | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  𝑋  ∈  V ) | 
						
							| 12 |  | distop | ⊢ ( 𝑋  ∈  V  →  𝒫  𝑋  ∈  Top ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  𝒫  𝑋  ∈  Top ) | 
						
							| 14 |  | snelpwi | ⊢ ( 𝑥  ∈  𝑋  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ∈  𝒫  𝑋 ) | 
						
							| 16 |  | snidg | ⊢ ( 𝑥  ∈  𝑋  →  𝑥  ∈  { 𝑥 } ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  { 𝑥 } ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  𝐶  ∈  PtFin ) | 
						
							| 19 | 7 | eleq2d | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  ( 𝑥  ∈  𝑋  ↔  𝑥  ∈  𝑌 ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑌 ) | 
						
							| 21 | 1 | ptfinfin | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑥  ∈  𝑌 )  →  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 }  ∈  Fin ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 }  ∈  Fin ) | 
						
							| 23 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑥 }  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  { 𝑥 } ) ) | 
						
							| 24 |  | ineq2 | ⊢ ( 𝑦  =  { 𝑥 }  →  ( 𝑠  ∩  𝑦 )  =  ( 𝑠  ∩  { 𝑥 } ) ) | 
						
							| 25 | 24 | neeq1d | ⊢ ( 𝑦  =  { 𝑥 }  →  ( ( 𝑠  ∩  𝑦 )  ≠  ∅  ↔  ( 𝑠  ∩  { 𝑥 } )  ≠  ∅ ) ) | 
						
							| 26 |  | disjsn | ⊢ ( ( 𝑠  ∩  { 𝑥 } )  =  ∅  ↔  ¬  𝑥  ∈  𝑠 ) | 
						
							| 27 | 26 | necon2abii | ⊢ ( 𝑥  ∈  𝑠  ↔  ( 𝑠  ∩  { 𝑥 } )  ≠  ∅ ) | 
						
							| 28 | 25 27 | bitr4di | ⊢ ( 𝑦  =  { 𝑥 }  →  ( ( 𝑠  ∩  𝑦 )  ≠  ∅  ↔  𝑥  ∈  𝑠 ) ) | 
						
							| 29 | 28 | rabbidv | ⊢ ( 𝑦  =  { 𝑥 }  →  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  =  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 } ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑦  =  { 𝑥 }  →  ( { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin  ↔  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 }  ∈  Fin ) ) | 
						
							| 31 | 23 30 | anbi12d | ⊢ ( 𝑦  =  { 𝑥 }  →  ( ( 𝑥  ∈  𝑦  ∧  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin )  ↔  ( 𝑥  ∈  { 𝑥 }  ∧  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 }  ∈  Fin ) ) ) | 
						
							| 32 | 31 | rspcev | ⊢ ( ( { 𝑥 }  ∈  𝒫  𝑋  ∧  ( 𝑥  ∈  { 𝑥 }  ∧  { 𝑠  ∈  𝐶  ∣  𝑥  ∈  𝑠 }  ∈  Fin ) )  →  ∃ 𝑦  ∈  𝒫  𝑋 ( 𝑥  ∈  𝑦  ∧  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin ) ) | 
						
							| 33 | 15 17 22 32 | syl12anc | ⊢ ( ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  ∧  𝑥  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝒫  𝑋 ( 𝑥  ∈  𝑦  ∧  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin ) ) | 
						
							| 34 | 33 | ralrimiva | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝒫  𝑋 ( 𝑥  ∈  𝑦  ∧  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin ) ) | 
						
							| 35 | 4 1 | islocfin | ⊢ ( 𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 )  ↔  ( 𝒫  𝑋  ∈  Top  ∧  𝑋  =  𝑌  ∧  ∀ 𝑥  ∈  𝑋 ∃ 𝑦  ∈  𝒫  𝑋 ( 𝑥  ∈  𝑦  ∧  { 𝑠  ∈  𝐶  ∣  ( 𝑠  ∩  𝑦 )  ≠  ∅ }  ∈  Fin ) ) ) | 
						
							| 36 | 13 7 34 35 | syl3anbrc | ⊢ ( ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 )  →  𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 ) ) | 
						
							| 37 | 6 36 | impbii | ⊢ ( 𝐶  ∈  ( LocFin ‘ 𝒫  𝑋 )  ↔  ( 𝐶  ∈  PtFin  ∧  𝑋  =  𝑌 ) ) |