Metamath Proof Explorer
Description: The natural logarithm of 1 . One case of Property 1a of Cohen
p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)
|
|
Ref |
Expression |
|
Assertion |
log1 |
⊢ ( log ‘ 1 ) = 0 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
2 |
|
1rp |
⊢ 1 ∈ ℝ+ |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
|
relogeftb |
⊢ ( ( 1 ∈ ℝ+ ∧ 0 ∈ ℝ ) → ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 ) ) |
5 |
2 3 4
|
mp2an |
⊢ ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 ) |
6 |
1 5
|
mpbir |
⊢ ( log ‘ 1 ) = 0 |