Metamath Proof Explorer


Theorem log1

Description: The natural logarithm of 1 . One case of Property 1a of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion log1 ( log ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 ef0 ( exp ‘ 0 ) = 1
2 1rp 1 ∈ ℝ+
3 0re 0 ∈ ℝ
4 relogeftb ( ( 1 ∈ ℝ+ ∧ 0 ∈ ℝ ) → ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 ) )
5 2 3 4 mp2an ( ( log ‘ 1 ) = 0 ↔ ( exp ‘ 0 ) = 1 )
6 1 5 mpbir ( log ‘ 1 ) = 0