Step |
Hyp |
Ref |
Expression |
1 |
|
log2cnv.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
0zd |
⊢ ( ⊤ → 0 ∈ ℤ ) |
4 |
|
2cn |
⊢ 2 ∈ ℂ |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
|
ine0 |
⊢ i ≠ 0 |
7 |
4 5 6
|
divcli |
⊢ ( 2 / i ) ∈ ℂ |
8 |
7
|
a1i |
⊢ ( ⊤ → ( 2 / i ) ∈ ℂ ) |
9 |
|
3cn |
⊢ 3 ∈ ℂ |
10 |
|
3ne0 |
⊢ 3 ≠ 0 |
11 |
5 9 10
|
divcli |
⊢ ( i / 3 ) ∈ ℂ |
12 |
|
absdiv |
⊢ ( ( i ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → ( abs ‘ ( i / 3 ) ) = ( ( abs ‘ i ) / ( abs ‘ 3 ) ) ) |
13 |
5 9 10 12
|
mp3an |
⊢ ( abs ‘ ( i / 3 ) ) = ( ( abs ‘ i ) / ( abs ‘ 3 ) ) |
14 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
15 |
|
3re |
⊢ 3 ∈ ℝ |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
3pos |
⊢ 0 < 3 |
18 |
16 15 17
|
ltleii |
⊢ 0 ≤ 3 |
19 |
|
absid |
⊢ ( ( 3 ∈ ℝ ∧ 0 ≤ 3 ) → ( abs ‘ 3 ) = 3 ) |
20 |
15 18 19
|
mp2an |
⊢ ( abs ‘ 3 ) = 3 |
21 |
14 20
|
oveq12i |
⊢ ( ( abs ‘ i ) / ( abs ‘ 3 ) ) = ( 1 / 3 ) |
22 |
13 21
|
eqtri |
⊢ ( abs ‘ ( i / 3 ) ) = ( 1 / 3 ) |
23 |
|
1lt3 |
⊢ 1 < 3 |
24 |
|
recgt1 |
⊢ ( ( 3 ∈ ℝ ∧ 0 < 3 ) → ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) ) |
25 |
15 17 24
|
mp2an |
⊢ ( 1 < 3 ↔ ( 1 / 3 ) < 1 ) |
26 |
23 25
|
mpbi |
⊢ ( 1 / 3 ) < 1 |
27 |
22 26
|
eqbrtri |
⊢ ( abs ‘ ( i / 3 ) ) < 1 |
28 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) |
29 |
28
|
atantayl3 |
⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( abs ‘ ( i / 3 ) ) < 1 ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) ) |
30 |
11 27 29
|
mp2an |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) |
31 |
30
|
a1i |
⊢ ( ⊤ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ) ⇝ ( arctan ‘ ( i / 3 ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( - 1 ↑ 𝑛 ) = ( - 1 ↑ 𝑘 ) ) |
33 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 2 · 𝑛 ) = ( 2 · 𝑘 ) ) |
34 |
33
|
oveq1d |
⊢ ( 𝑛 = 𝑘 → ( ( 2 · 𝑛 ) + 1 ) = ( ( 2 · 𝑘 ) + 1 ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) = ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) |
36 |
35 34
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) = ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
37 |
32 36
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
38 |
|
ovex |
⊢ ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ V |
39 |
37 28 38
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
40 |
5
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → i ∈ ℂ ) |
41 |
9
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 3 ∈ ℂ ) |
42 |
10
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 3 ≠ 0 ) |
43 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
44 |
|
nn0mulcl |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 2 · 𝑘 ) ∈ ℕ0 ) |
45 |
43 44
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) ∈ ℕ0 ) |
46 |
|
peano2nn0 |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
47 |
45 46
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) |
48 |
40 41 42 47
|
expdivd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
50 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
51 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
52 |
50 51
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
53 |
|
expcl |
⊢ ( ( i ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
54 |
5 47 53
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
55 |
|
3nn |
⊢ 3 ∈ ℕ |
56 |
|
nnexpcl |
⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
57 |
55 47 56
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
58 |
57
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
59 |
57
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ≠ 0 ) |
60 |
52 54 58 59
|
divassd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
61 |
|
expp1 |
⊢ ( ( i ∈ ℂ ∧ ( 2 · 𝑘 ) ∈ ℕ0 ) → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( 2 · 𝑘 ) ) · i ) ) |
62 |
5 45 61
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i ↑ ( 2 · 𝑘 ) ) · i ) ) |
63 |
|
expmul |
⊢ ( ( i ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ ( 2 · 𝑘 ) ) = ( ( i ↑ 2 ) ↑ 𝑘 ) ) |
64 |
5 43 63
|
mp3an12 |
⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( 2 · 𝑘 ) ) = ( ( i ↑ 2 ) ↑ 𝑘 ) ) |
65 |
|
i2 |
⊢ ( i ↑ 2 ) = - 1 |
66 |
65
|
oveq1i |
⊢ ( ( i ↑ 2 ) ↑ 𝑘 ) = ( - 1 ↑ 𝑘 ) |
67 |
64 66
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( 2 · 𝑘 ) ) = ( - 1 ↑ 𝑘 ) ) |
68 |
67
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i ↑ ( 2 · 𝑘 ) ) · i ) = ( ( - 1 ↑ 𝑘 ) · i ) ) |
69 |
62 68
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) · i ) ) |
70 |
69
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( - 1 ↑ 𝑘 ) · i ) ) ) |
71 |
52 52 40
|
mulassd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = ( ( - 1 ↑ 𝑘 ) · ( ( - 1 ↑ 𝑘 ) · i ) ) ) |
72 |
50
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → - 1 ∈ ℂ ) |
73 |
|
id |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) |
74 |
72 73 73
|
expaddd |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 𝑘 + 𝑘 ) ) = ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) ) |
75 |
|
expmul |
⊢ ( ( - 1 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑘 ) ) |
76 |
50 43 75
|
mp3an12 |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( ( - 1 ↑ 2 ) ↑ 𝑘 ) ) |
77 |
|
neg1sqe1 |
⊢ ( - 1 ↑ 2 ) = 1 |
78 |
77
|
oveq1i |
⊢ ( ( - 1 ↑ 2 ) ↑ 𝑘 ) = ( 1 ↑ 𝑘 ) |
79 |
76 78
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( 1 ↑ 𝑘 ) ) |
80 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
81 |
80
|
2timesd |
⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 𝑘 ) = ( 𝑘 + 𝑘 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 2 · 𝑘 ) ) = ( - 1 ↑ ( 𝑘 + 𝑘 ) ) ) |
83 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
84 |
|
1exp |
⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) |
85 |
83 84
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( 1 ↑ 𝑘 ) = 1 ) |
86 |
79 82 85
|
3eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( - 1 ↑ ( 𝑘 + 𝑘 ) ) = 1 ) |
87 |
74 86
|
eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) = 1 ) |
88 |
87
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = ( 1 · i ) ) |
89 |
5
|
mulid2i |
⊢ ( 1 · i ) = i |
90 |
88 89
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( - 1 ↑ 𝑘 ) ) · i ) = i ) |
91 |
70 71 90
|
3eqtr2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = i ) |
92 |
91
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
93 |
49 60 92
|
3eqtr2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
94 |
93
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
95 |
|
expcl |
⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ0 ) → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
96 |
11 47 95
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℂ ) |
97 |
|
nn0p1nn |
⊢ ( ( 2 · 𝑘 ) ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
98 |
45 97
|
syl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) |
99 |
98
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ∈ ℂ ) |
100 |
98
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 𝑘 ) + 1 ) ≠ 0 ) |
101 |
52 96 99 100
|
divassd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
102 |
40 58 99 59 100
|
divdiv1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
103 |
94 101 102
|
3eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
104 |
58 99
|
mulcomd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) = ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
105 |
104
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
106 |
39 103 105
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ) |
107 |
98 57
|
nnmulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℕ ) |
108 |
107
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
109 |
107
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ≠ 0 ) |
110 |
40 108 109
|
divcld |
⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( ( 2 · 𝑘 ) + 1 ) · ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) ) ∈ ℂ ) |
111 |
106 110
|
eqeltrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
112 |
111
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
113 |
34
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) = ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ) |
114 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 9 ↑ 𝑛 ) = ( 9 ↑ 𝑘 ) ) |
115 |
113 114
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) = ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) |
116 |
115
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 2 / ( ( 3 · ( ( 2 · 𝑛 ) + 1 ) ) · ( 9 ↑ 𝑛 ) ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
117 |
|
ovex |
⊢ ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ V |
118 |
116 1 117
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
119 |
|
expp1 |
⊢ ( ( 3 ∈ ℂ ∧ ( 2 · 𝑘 ) ∈ ℕ0 ) → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) ) |
120 |
9 45 119
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) ) |
121 |
|
expmul |
⊢ ( ( 3 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 3 ↑ ( 2 · 𝑘 ) ) = ( ( 3 ↑ 2 ) ↑ 𝑘 ) ) |
122 |
9 43 121
|
mp3an12 |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( 2 · 𝑘 ) ) = ( ( 3 ↑ 2 ) ↑ 𝑘 ) ) |
123 |
|
sq3 |
⊢ ( 3 ↑ 2 ) = 9 |
124 |
123
|
oveq1i |
⊢ ( ( 3 ↑ 2 ) ↑ 𝑘 ) = ( 9 ↑ 𝑘 ) |
125 |
122 124
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( 2 · 𝑘 ) ) = ( 9 ↑ 𝑘 ) ) |
126 |
125
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 ↑ ( 2 · 𝑘 ) ) · 3 ) = ( ( 9 ↑ 𝑘 ) · 3 ) ) |
127 |
|
9nn |
⊢ 9 ∈ ℕ |
128 |
|
nnexpcl |
⊢ ( ( 9 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 9 ↑ 𝑘 ) ∈ ℕ ) |
129 |
127 128
|
mpan |
⊢ ( 𝑘 ∈ ℕ0 → ( 9 ↑ 𝑘 ) ∈ ℕ ) |
130 |
129
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( 9 ↑ 𝑘 ) ∈ ℂ ) |
131 |
|
mulcom |
⊢ ( ( ( 9 ↑ 𝑘 ) ∈ ℂ ∧ 3 ∈ ℂ ) → ( ( 9 ↑ 𝑘 ) · 3 ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) |
132 |
130 9 131
|
sylancl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 9 ↑ 𝑘 ) · 3 ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) |
133 |
120 126 132
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) = ( 3 · ( 9 ↑ 𝑘 ) ) ) |
134 |
91 133
|
oveq12d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( i ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( 3 ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) ) |
135 |
49 60 134
|
3eqtr2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) ) |
136 |
135
|
oveq1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ( - 1 ↑ 𝑘 ) · ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) |
137 |
|
nnmulcl |
⊢ ( ( 3 ∈ ℕ ∧ ( 9 ↑ 𝑘 ) ∈ ℕ ) → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) |
138 |
55 129 137
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) |
139 |
138
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ∈ ℂ ) |
140 |
138
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( 9 ↑ 𝑘 ) ) ≠ 0 ) |
141 |
40 139 99 140 100
|
divdiv1d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( 3 · ( 9 ↑ 𝑘 ) ) ) / ( ( 2 · 𝑘 ) + 1 ) ) = ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
142 |
136 101 141
|
3eqtr3d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( - 1 ↑ 𝑘 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑘 ) + 1 ) ) / ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) ) |
143 |
41 130 99
|
mul32d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) = ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) |
144 |
143
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 · ( 9 ↑ 𝑘 ) ) · ( ( 2 · 𝑘 ) + 1 ) ) ) = ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
145 |
39 142 144
|
3eqtrd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) = ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
146 |
145
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) |
147 |
|
nnmulcl |
⊢ ( ( 3 ∈ ℕ ∧ ( ( 2 · 𝑘 ) + 1 ) ∈ ℕ ) → ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
148 |
55 98 147
|
sylancr |
⊢ ( 𝑘 ∈ ℕ0 → ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) ∈ ℕ ) |
149 |
148 129
|
nnmulcld |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ∈ ℕ ) |
150 |
149
|
nncnd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ∈ ℂ ) |
151 |
149
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ≠ 0 ) |
152 |
40 150 151
|
divcld |
⊢ ( 𝑘 ∈ ℕ0 → ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ ℂ ) |
153 |
|
mulcom |
⊢ ( ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ∈ ℂ ∧ ( 2 / i ) ∈ ℂ ) → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) |
154 |
152 7 153
|
sylancl |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( ( 2 / i ) · ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) ) |
155 |
4
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → 2 ∈ ℂ ) |
156 |
6
|
a1i |
⊢ ( 𝑘 ∈ ℕ0 → i ≠ 0 ) |
157 |
155 40 150 156 151
|
dmdcand |
⊢ ( 𝑘 ∈ ℕ0 → ( ( i / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) · ( 2 / i ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
158 |
146 154 157
|
3eqtr2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) = ( 2 / ( ( 3 · ( ( 2 · 𝑘 ) + 1 ) ) · ( 9 ↑ 𝑘 ) ) ) ) |
159 |
118 158
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
160 |
159
|
adantl |
⊢ ( ( ⊤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 2 / i ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( - 1 ↑ 𝑛 ) · ( ( ( i / 3 ) ↑ ( ( 2 · 𝑛 ) + 1 ) ) / ( ( 2 · 𝑛 ) + 1 ) ) ) ) ‘ 𝑘 ) ) ) |
161 |
2 3 8 31 112 160
|
isermulc2 |
⊢ ( ⊤ → seq 0 ( + , 𝐹 ) ⇝ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) ) |
162 |
161
|
mptru |
⊢ seq 0 ( + , 𝐹 ) ⇝ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) |
163 |
|
bndatandm |
⊢ ( ( ( i / 3 ) ∈ ℂ ∧ ( abs ‘ ( i / 3 ) ) < 1 ) → ( i / 3 ) ∈ dom arctan ) |
164 |
11 27 163
|
mp2an |
⊢ ( i / 3 ) ∈ dom arctan |
165 |
|
atanval |
⊢ ( ( i / 3 ) ∈ dom arctan → ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) ) |
166 |
164 165
|
ax-mp |
⊢ ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) |
167 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
168 |
167
|
oveq1i |
⊢ ( 4 / 3 ) = ( ( 3 + 1 ) / 3 ) |
169 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
170 |
9 169 9 10
|
divdiri |
⊢ ( ( 3 + 1 ) / 3 ) = ( ( 3 / 3 ) + ( 1 / 3 ) ) |
171 |
9 10
|
dividi |
⊢ ( 3 / 3 ) = 1 |
172 |
171
|
oveq1i |
⊢ ( ( 3 / 3 ) + ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
173 |
168 170 172
|
3eqtri |
⊢ ( 4 / 3 ) = ( 1 + ( 1 / 3 ) ) |
174 |
169 9 10
|
divcli |
⊢ ( 1 / 3 ) ∈ ℂ |
175 |
169 174
|
subnegi |
⊢ ( 1 − - ( 1 / 3 ) ) = ( 1 + ( 1 / 3 ) ) |
176 |
|
divneg |
⊢ ( ( 1 ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0 ) → - ( 1 / 3 ) = ( - 1 / 3 ) ) |
177 |
169 9 10 176
|
mp3an |
⊢ - ( 1 / 3 ) = ( - 1 / 3 ) |
178 |
|
ixi |
⊢ ( i · i ) = - 1 |
179 |
178
|
oveq1i |
⊢ ( ( i · i ) / 3 ) = ( - 1 / 3 ) |
180 |
5 5 9 10
|
divassi |
⊢ ( ( i · i ) / 3 ) = ( i · ( i / 3 ) ) |
181 |
177 179 180
|
3eqtr2i |
⊢ - ( 1 / 3 ) = ( i · ( i / 3 ) ) |
182 |
181
|
oveq2i |
⊢ ( 1 − - ( 1 / 3 ) ) = ( 1 − ( i · ( i / 3 ) ) ) |
183 |
173 175 182
|
3eqtr2ri |
⊢ ( 1 − ( i · ( i / 3 ) ) ) = ( 4 / 3 ) |
184 |
183
|
fveq2i |
⊢ ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) = ( log ‘ ( 4 / 3 ) ) |
185 |
9 10
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
186 |
|
divsubdir |
⊢ ( ( 3 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) ) |
187 |
9 169 185 186
|
mp3an |
⊢ ( ( 3 − 1 ) / 3 ) = ( ( 3 / 3 ) − ( 1 / 3 ) ) |
188 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
189 |
188
|
oveq1i |
⊢ ( ( 3 − 1 ) / 3 ) = ( 2 / 3 ) |
190 |
171
|
oveq1i |
⊢ ( ( 3 / 3 ) − ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
191 |
187 189 190
|
3eqtr3i |
⊢ ( 2 / 3 ) = ( 1 − ( 1 / 3 ) ) |
192 |
169 174
|
negsubi |
⊢ ( 1 + - ( 1 / 3 ) ) = ( 1 − ( 1 / 3 ) ) |
193 |
181
|
oveq2i |
⊢ ( 1 + - ( 1 / 3 ) ) = ( 1 + ( i · ( i / 3 ) ) ) |
194 |
191 192 193
|
3eqtr2ri |
⊢ ( 1 + ( i · ( i / 3 ) ) ) = ( 2 / 3 ) |
195 |
194
|
fveq2i |
⊢ ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) = ( log ‘ ( 2 / 3 ) ) |
196 |
184 195
|
oveq12i |
⊢ ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) |
197 |
|
4re |
⊢ 4 ∈ ℝ |
198 |
|
4pos |
⊢ 0 < 4 |
199 |
197 198
|
elrpii |
⊢ 4 ∈ ℝ+ |
200 |
|
3rp |
⊢ 3 ∈ ℝ+ |
201 |
|
rpdivcl |
⊢ ( ( 4 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 4 / 3 ) ∈ ℝ+ ) |
202 |
199 200 201
|
mp2an |
⊢ ( 4 / 3 ) ∈ ℝ+ |
203 |
|
2rp |
⊢ 2 ∈ ℝ+ |
204 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 2 / 3 ) ∈ ℝ+ ) |
205 |
203 200 204
|
mp2an |
⊢ ( 2 / 3 ) ∈ ℝ+ |
206 |
|
relogdiv |
⊢ ( ( ( 4 / 3 ) ∈ ℝ+ ∧ ( 2 / 3 ) ∈ ℝ+ ) → ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) ) |
207 |
202 205 206
|
mp2an |
⊢ ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( ( log ‘ ( 4 / 3 ) ) − ( log ‘ ( 2 / 3 ) ) ) |
208 |
|
4cn |
⊢ 4 ∈ ℂ |
209 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
210 |
|
divcan7 |
⊢ ( ( 4 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) ) |
211 |
208 209 185 210
|
mp3an |
⊢ ( ( 4 / 3 ) / ( 2 / 3 ) ) = ( 4 / 2 ) |
212 |
|
4d2e2 |
⊢ ( 4 / 2 ) = 2 |
213 |
211 212
|
eqtri |
⊢ ( ( 4 / 3 ) / ( 2 / 3 ) ) = 2 |
214 |
213
|
fveq2i |
⊢ ( log ‘ ( ( 4 / 3 ) / ( 2 / 3 ) ) ) = ( log ‘ 2 ) |
215 |
196 207 214
|
3eqtr2i |
⊢ ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) = ( log ‘ 2 ) |
216 |
215
|
oveq2i |
⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · ( i / 3 ) ) ) ) − ( log ‘ ( 1 + ( i · ( i / 3 ) ) ) ) ) ) = ( ( i / 2 ) · ( log ‘ 2 ) ) |
217 |
166 216
|
eqtri |
⊢ ( arctan ‘ ( i / 3 ) ) = ( ( i / 2 ) · ( log ‘ 2 ) ) |
218 |
217
|
oveq2i |
⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( ( 2 / i ) · ( ( i / 2 ) · ( log ‘ 2 ) ) ) |
219 |
|
2ne0 |
⊢ 2 ≠ 0 |
220 |
5 4 219
|
divcli |
⊢ ( i / 2 ) ∈ ℂ |
221 |
|
logcl |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( log ‘ 2 ) ∈ ℂ ) |
222 |
4 219 221
|
mp2an |
⊢ ( log ‘ 2 ) ∈ ℂ |
223 |
7 220 222
|
mulassi |
⊢ ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) = ( ( 2 / i ) · ( ( i / 2 ) · ( log ‘ 2 ) ) ) |
224 |
218 223
|
eqtr4i |
⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) |
225 |
|
divcan6 |
⊢ ( ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 2 / i ) · ( i / 2 ) ) = 1 ) |
226 |
4 219 5 6 225
|
mp4an |
⊢ ( ( 2 / i ) · ( i / 2 ) ) = 1 |
227 |
226
|
oveq1i |
⊢ ( ( ( 2 / i ) · ( i / 2 ) ) · ( log ‘ 2 ) ) = ( 1 · ( log ‘ 2 ) ) |
228 |
222
|
mulid2i |
⊢ ( 1 · ( log ‘ 2 ) ) = ( log ‘ 2 ) |
229 |
224 227 228
|
3eqtri |
⊢ ( ( 2 / i ) · ( arctan ‘ ( i / 3 ) ) ) = ( log ‘ 2 ) |
230 |
162 229
|
breqtri |
⊢ seq 0 ( + , 𝐹 ) ⇝ ( log ‘ 2 ) |