Metamath Proof Explorer


Theorem log2le1

Description: log 2 is less than 1 . This is just a weaker form of log2ub when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Assertion log2le1 ( log ‘ 2 ) < 1

Proof

Step Hyp Ref Expression
1 log2ub ( log ‘ 2 ) < ( 2 5 3 / 3 6 5 )
2 2nn0 2 ∈ ℕ0
3 3nn0 3 ∈ ℕ0
4 5nn0 5 ∈ ℕ0
5 6nn0 6 ∈ ℕ0
6 2lt3 2 < 3
7 5lt10 5 < 1 0
8 3lt10 3 < 1 0
9 2 3 4 5 3 4 6 7 8 3decltc 2 5 3 < 3 6 5
10 2 4 deccl 2 5 ∈ ℕ0
11 10 3 deccl 2 5 3 ∈ ℕ0
12 11 nn0rei 2 5 3 ∈ ℝ
13 3 5 deccl 3 6 ∈ ℕ0
14 13 4 deccl 3 6 5 ∈ ℕ0
15 14 nn0rei 3 6 5 ∈ ℝ
16 6nn 6 ∈ ℕ
17 3 16 decnncl 3 6 ∈ ℕ
18 0nn0 0 ∈ ℕ0
19 10pos 0 < 1 0
20 17 4 18 19 declti 0 < 3 6 5
21 12 15 15 20 ltdiv1ii ( 2 5 3 < 3 6 5 ↔ ( 2 5 3 / 3 6 5 ) < ( 3 6 5 / 3 6 5 ) )
22 9 21 mpbi ( 2 5 3 / 3 6 5 ) < ( 3 6 5 / 3 6 5 )
23 15 recni 3 6 5 ∈ ℂ
24 0re 0 ∈ ℝ
25 24 20 gtneii 3 6 5 ≠ 0
26 23 25 dividi ( 3 6 5 / 3 6 5 ) = 1
27 22 26 breqtri ( 2 5 3 / 3 6 5 ) < 1
28 2rp 2 ∈ ℝ+
29 relogcl ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ )
30 28 29 ax-mp ( log ‘ 2 ) ∈ ℝ
31 12 15 25 redivcli ( 2 5 3 / 3 6 5 ) ∈ ℝ
32 1re 1 ∈ ℝ
33 30 31 32 lttri ( ( ( log ‘ 2 ) < ( 2 5 3 / 3 6 5 ) ∧ ( 2 5 3 / 3 6 5 ) < 1 ) → ( log ‘ 2 ) < 1 )
34 1 27 33 mp2an ( log ‘ 2 ) < 1