| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 2 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 4 |
3
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 5 |
4
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 6 |
5
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑛 ) ↑ 2 ) ∈ ℝ ) |
| 7 |
1 6
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) ∈ ℝ ) |
| 8 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 10 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 12 |
11
|
resqcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ 𝐴 ) ↑ 2 ) ∈ ℝ ) |
| 13 |
|
2re |
⊢ 2 ∈ ℝ |
| 14 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 15 |
13 11 14
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 2 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 16 |
|
resubcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 · ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 17 |
13 15 16
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 18 |
12 17
|
readdcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ∈ ℝ ) |
| 19 |
9 18
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ∈ ℝ ) |
| 20 |
7 19
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ∈ ℂ ) |
| 22 |
21
|
abscld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) ∈ ℝ ) |
| 23 |
|
resubcl |
⊢ ( ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) ∈ ℝ ) |
| 24 |
22 13 23
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) ∈ ℝ ) |
| 25 |
|
2cn |
⊢ 2 ∈ ℂ |
| 26 |
25
|
negcli |
⊢ - 2 ∈ ℂ |
| 27 |
|
subcl |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ∈ ℂ ∧ - 2 ∈ ℂ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ∈ ℂ ) |
| 28 |
21 26 27
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ∈ ℂ ) |
| 29 |
28
|
abscld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ∈ ℝ ) |
| 30 |
25
|
absnegi |
⊢ ( abs ‘ - 2 ) = ( abs ‘ 2 ) |
| 31 |
|
0le2 |
⊢ 0 ≤ 2 |
| 32 |
|
absid |
⊢ ( ( 2 ∈ ℝ ∧ 0 ≤ 2 ) → ( abs ‘ 2 ) = 2 ) |
| 33 |
13 31 32
|
mp2an |
⊢ ( abs ‘ 2 ) = 2 |
| 34 |
30 33
|
eqtri |
⊢ ( abs ‘ - 2 ) = 2 |
| 35 |
34
|
oveq2i |
⊢ ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − ( abs ‘ - 2 ) ) = ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) |
| 36 |
|
abs2dif |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ∈ ℂ ∧ - 2 ∈ ℂ ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − ( abs ‘ - 2 ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ) |
| 37 |
21 26 36
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − ( abs ‘ - 2 ) ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ) |
| 38 |
35 37
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) ≤ ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝐴 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 41 |
40
|
sumeq1d |
⊢ ( 𝑥 = 𝐴 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 42 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
| 43 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( log ‘ 𝑥 ) = ( log ‘ 𝐴 ) ) |
| 44 |
43
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( log ‘ 𝑥 ) ↑ 2 ) = ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 45 |
43
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 · ( log ‘ 𝑥 ) ) = ( 2 · ( log ‘ 𝐴 ) ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) = ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) |
| 47 |
44 46
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) |
| 48 |
42 47
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) |
| 49 |
41 48
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) |
| 50 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) |
| 51 |
|
ovex |
⊢ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ∈ V |
| 52 |
49 50 51
|
fvmpt3i |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) |
| 54 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 55 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 1 ) ) |
| 56 |
|
1z |
⊢ 1 ∈ ℤ |
| 57 |
|
flid |
⊢ ( 1 ∈ ℤ → ( ⌊ ‘ 1 ) = 1 ) |
| 58 |
56 57
|
ax-mp |
⊢ ( ⌊ ‘ 1 ) = 1 |
| 59 |
55 58
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( ⌊ ‘ 𝑥 ) = 1 ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ... 1 ) ) |
| 61 |
60
|
sumeq1d |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) = Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 62 |
|
0cn |
⊢ 0 ∈ ℂ |
| 63 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = ( log ‘ 1 ) ) |
| 64 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 65 |
63 64
|
eqtrdi |
⊢ ( 𝑛 = 1 → ( log ‘ 𝑛 ) = 0 ) |
| 66 |
65
|
sq0id |
⊢ ( 𝑛 = 1 → ( ( log ‘ 𝑛 ) ↑ 2 ) = 0 ) |
| 67 |
66
|
fsum1 |
⊢ ( ( 1 ∈ ℤ ∧ 0 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 ) = 0 ) |
| 68 |
56 62 67
|
mp2an |
⊢ Σ 𝑛 ∈ ( 1 ... 1 ) ( ( log ‘ 𝑛 ) ↑ 2 ) = 0 |
| 69 |
61 68
|
eqtrdi |
⊢ ( 𝑥 = 1 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) = 0 ) |
| 70 |
|
id |
⊢ ( 𝑥 = 1 → 𝑥 = 1 ) |
| 71 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) ) |
| 72 |
71 64
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = 0 ) |
| 73 |
72
|
sq0id |
⊢ ( 𝑥 = 1 → ( ( log ‘ 𝑥 ) ↑ 2 ) = 0 ) |
| 74 |
72
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 2 · ( log ‘ 𝑥 ) ) = ( 2 · 0 ) ) |
| 75 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 76 |
74 75
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 2 · ( log ‘ 𝑥 ) ) = 0 ) |
| 77 |
76
|
oveq2d |
⊢ ( 𝑥 = 1 → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) = ( 2 − 0 ) ) |
| 78 |
25
|
subid1i |
⊢ ( 2 − 0 ) = 2 |
| 79 |
77 78
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) = 2 ) |
| 80 |
73 79
|
oveq12d |
⊢ ( 𝑥 = 1 → ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 0 + 2 ) ) |
| 81 |
25
|
addlidi |
⊢ ( 0 + 2 ) = 2 |
| 82 |
80 81
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) = 2 ) |
| 83 |
70 82
|
oveq12d |
⊢ ( 𝑥 = 1 → ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 1 · 2 ) ) |
| 84 |
25
|
mullidi |
⊢ ( 1 · 2 ) = 2 |
| 85 |
83 84
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = 2 ) |
| 86 |
69 85
|
oveq12d |
⊢ ( 𝑥 = 1 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) = ( 0 − 2 ) ) |
| 87 |
|
df-neg |
⊢ - 2 = ( 0 − 2 ) |
| 88 |
86 87
|
eqtr4di |
⊢ ( 𝑥 = 1 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) = - 2 ) |
| 89 |
88 50 51
|
fvmpt3i |
⊢ ( 1 ∈ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) = - 2 ) |
| 90 |
54 89
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) = - 2 ) |
| 91 |
53 90
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) ) = ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) |
| 92 |
91
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) ) ) = ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ) |
| 93 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 94 |
93
|
eqcomi |
⊢ ℝ+ = ( 0 (,) +∞ ) |
| 95 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 96 |
56
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℤ ) |
| 97 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ ) |
| 98 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 99 |
98
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → +∞ ∈ ℝ* ) |
| 100 |
|
1re |
⊢ 1 ∈ ℝ |
| 101 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 102 |
100 101
|
nn0addge1i |
⊢ 1 ≤ ( 1 + 1 ) |
| 103 |
102
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ ( 1 + 1 ) ) |
| 104 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 0 ∈ ℝ ) |
| 105 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 106 |
105
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 107 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 108 |
107
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 109 |
108
|
resqcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 110 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝑥 ) ∈ ℝ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 111 |
13 108 110
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 112 |
|
resubcl |
⊢ ( ( 2 ∈ ℝ ∧ ( 2 · ( log ‘ 𝑥 ) ) ∈ ℝ ) → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 113 |
13 111 112
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 114 |
109 113
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
| 115 |
106 114
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ∈ ℝ ) |
| 116 |
|
nnrp |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ+ ) |
| 117 |
116 109
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℕ ) → ( ( log ‘ 𝑥 ) ↑ 2 ) ∈ ℝ ) |
| 118 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 119 |
118
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ℝ ∈ { ℝ , ℂ } ) |
| 120 |
106
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 121 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 122 |
|
recn |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) |
| 123 |
122
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 124 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 125 |
119
|
dvmptid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ 1 ) ) |
| 126 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 127 |
126
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ℝ+ ⊆ ℝ ) |
| 128 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 129 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 130 |
|
iooretop |
⊢ ( 0 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) |
| 131 |
93 130
|
eqeltrri |
⊢ ℝ+ ∈ ( topGen ‘ ran (,) ) |
| 132 |
131
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ℝ+ ∈ ( topGen ‘ ran (,) ) ) |
| 133 |
119 123 124 125 127 128 129 132
|
dvmptres |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ 1 ) ) |
| 134 |
114
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ∈ ℂ ) |
| 135 |
|
resubcl |
⊢ ( ( ( 2 · ( log ‘ 𝑥 ) ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ∈ ℝ ) |
| 136 |
111 13 135
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ∈ ℝ ) |
| 137 |
136 107
|
rerpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) ∈ ℝ ) |
| 138 |
109
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) ↑ 2 ) ∈ ℂ ) |
| 139 |
111
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 2 · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 140 |
107
|
rpreccld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 141 |
140
|
rpcnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 142 |
139 141
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) ∈ ℂ ) |
| 143 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 144 |
143
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ℂ ∈ { ℝ , ℂ } ) |
| 145 |
108
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 146 |
|
sqcl |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
| 147 |
146
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℂ ) → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
| 148 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 149 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 150 |
25 148 149
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑦 ∈ ℂ ) → ( 2 · 𝑦 ) ∈ ℂ ) |
| 151 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 152 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 153 |
151 152
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 154 |
153
|
feqmptd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 155 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 156 |
155
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 157 |
154 156
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 158 |
157
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
| 159 |
|
dvrelog |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 160 |
158 159
|
eqtr3di |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 161 |
|
2nn |
⊢ 2 ∈ ℕ |
| 162 |
|
dvexp |
⊢ ( 2 ∈ ℕ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 2 · ( 𝑦 ↑ ( 2 − 1 ) ) ) ) ) |
| 163 |
161 162
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 2 · ( 𝑦 ↑ ( 2 − 1 ) ) ) ) ) |
| 164 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 165 |
164
|
oveq2i |
⊢ ( 𝑦 ↑ ( 2 − 1 ) ) = ( 𝑦 ↑ 1 ) |
| 166 |
|
exp1 |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ↑ 1 ) = 𝑦 ) |
| 167 |
165 166
|
eqtrid |
⊢ ( 𝑦 ∈ ℂ → ( 𝑦 ↑ ( 2 − 1 ) ) = 𝑦 ) |
| 168 |
167
|
oveq2d |
⊢ ( 𝑦 ∈ ℂ → ( 2 · ( 𝑦 ↑ ( 2 − 1 ) ) ) = ( 2 · 𝑦 ) ) |
| 169 |
168
|
mpteq2ia |
⊢ ( 𝑦 ∈ ℂ ↦ ( 2 · ( 𝑦 ↑ ( 2 − 1 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 2 · 𝑦 ) ) |
| 170 |
163 169
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 2 · 𝑦 ) ) ) |
| 171 |
|
oveq1 |
⊢ ( 𝑦 = ( log ‘ 𝑥 ) → ( 𝑦 ↑ 2 ) = ( ( log ‘ 𝑥 ) ↑ 2 ) ) |
| 172 |
|
oveq2 |
⊢ ( 𝑦 = ( log ‘ 𝑥 ) → ( 2 · 𝑦 ) = ( 2 · ( log ‘ 𝑥 ) ) ) |
| 173 |
119 144 145 140 147 150 160 170 171 172
|
dvmptco |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) ↑ 2 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) ) ) |
| 174 |
113
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 175 |
|
ovexd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ∈ V ) |
| 176 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℂ ) |
| 177 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 0 ∈ ℝ ) |
| 178 |
|
2cnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → 2 ∈ ℂ ) |
| 179 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℝ ) |
| 180 |
|
2cnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 2 ∈ ℂ ) |
| 181 |
119 180
|
dvmptc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ ↦ 2 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 182 |
119 178 179 181 127 128 129 132
|
dvmptres |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 2 ) ) = ( 𝑥 ∈ ℝ+ ↦ 0 ) ) |
| 183 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( 1 / 𝑥 ) ∈ ℂ ) → ( 2 · ( 1 / 𝑥 ) ) ∈ ℂ ) |
| 184 |
25 141 183
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 2 · ( 1 / 𝑥 ) ) ∈ ℂ ) |
| 185 |
119 145 140 160 180
|
dvmptcmul |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 2 · ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 2 · ( 1 / 𝑥 ) ) ) ) |
| 186 |
119 176 177 182 139 184 185
|
dvmptsub |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) ) |
| 187 |
119 138 142 173 174 175 186
|
dvmptadd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) ) ) |
| 188 |
139 176 141
|
subdird |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) · ( 1 / 𝑥 ) ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) − ( 2 · ( 1 / 𝑥 ) ) ) ) |
| 189 |
136
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ∈ ℂ ) |
| 190 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 191 |
190
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 192 |
189 120 191
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) · ( 1 / 𝑥 ) ) ) |
| 193 |
|
df-neg |
⊢ - ( 2 · ( 1 / 𝑥 ) ) = ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) |
| 194 |
193
|
oveq2i |
⊢ ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + - ( 2 · ( 1 / 𝑥 ) ) ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) |
| 195 |
142 184
|
negsubd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + - ( 2 · ( 1 / 𝑥 ) ) ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) − ( 2 · ( 1 / 𝑥 ) ) ) ) |
| 196 |
194 195
|
eqtr3id |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) − ( 2 · ( 1 / 𝑥 ) ) ) ) |
| 197 |
188 192 196
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) = ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) ) |
| 198 |
197
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝑥 ∈ ℝ+ ↦ ( ( ( 2 · ( log ‘ 𝑥 ) ) · ( 1 / 𝑥 ) ) + ( 0 − ( 2 · ( 1 / 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) ) ) |
| 199 |
187 198
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) ) ) |
| 200 |
119 120 121 133 134 137 199
|
dvmptmul |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) + ( ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) · 𝑥 ) ) ) ) |
| 201 |
134
|
mullidd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 202 |
138 139 176
|
subsub2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) ↑ 2 ) − ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) = ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) |
| 203 |
201 202
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) = ( ( ( log ‘ 𝑥 ) ↑ 2 ) − ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) ) |
| 204 |
189 120 191
|
divcan1d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) · 𝑥 ) = ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) |
| 205 |
203 204
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) + ( ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) · 𝑥 ) ) = ( ( ( ( log ‘ 𝑥 ) ↑ 2 ) − ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) + ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) ) |
| 206 |
138 189
|
npcand |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( log ‘ 𝑥 ) ↑ 2 ) − ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) + ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) ) = ( ( log ‘ 𝑥 ) ↑ 2 ) ) |
| 207 |
205 206
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) + ( ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) · 𝑥 ) ) = ( ( log ‘ 𝑥 ) ↑ 2 ) ) |
| 208 |
207
|
mpteq2dva |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) + ( ( ( ( 2 · ( log ‘ 𝑥 ) ) − 2 ) / 𝑥 ) · 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) ↑ 2 ) ) ) |
| 209 |
200 208
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) ↑ 2 ) ) ) |
| 210 |
|
fveq2 |
⊢ ( 𝑥 = 𝑛 → ( log ‘ 𝑥 ) = ( log ‘ 𝑛 ) ) |
| 211 |
210
|
oveq1d |
⊢ ( 𝑥 = 𝑛 → ( ( log ‘ 𝑥 ) ↑ 2 ) = ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 212 |
|
simp32 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑥 ≤ 𝑛 ) |
| 213 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 214 |
|
simp2r |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑛 ∈ ℝ+ ) |
| 215 |
213 214
|
logled |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( 𝑥 ≤ 𝑛 ↔ ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ) ) |
| 216 |
212 215
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ) |
| 217 |
213
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 218 |
214
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 219 |
|
simp31 |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 1 ≤ 𝑥 ) |
| 220 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( 1 ≤ 𝑥 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) ) |
| 221 |
54 213 220
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( 1 ≤ 𝑥 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) ) |
| 222 |
219 221
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( log ‘ 1 ) ≤ ( log ‘ 𝑥 ) ) |
| 223 |
64 222
|
eqbrtrrid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 0 ≤ ( log ‘ 𝑥 ) ) |
| 224 |
214
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑛 ∈ ℝ ) |
| 225 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 1 ∈ ℝ ) |
| 226 |
213
|
rpred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 𝑥 ∈ ℝ ) |
| 227 |
225 226 224 219 212
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 1 ≤ 𝑛 ) |
| 228 |
224 227
|
logge0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → 0 ≤ ( log ‘ 𝑛 ) ) |
| 229 |
217 218 223 228
|
le2sqd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( ( log ‘ 𝑥 ) ≤ ( log ‘ 𝑛 ) ↔ ( ( log ‘ 𝑥 ) ↑ 2 ) ≤ ( ( log ‘ 𝑛 ) ↑ 2 ) ) ) |
| 230 |
216 229
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ∧ ( 1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞ ) ) → ( ( log ‘ 𝑥 ) ↑ 2 ) ≤ ( ( log ‘ 𝑛 ) ↑ 2 ) ) |
| 231 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 232 |
231
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 233 |
232
|
sqge0d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 0 ≤ ( ( log ‘ 𝑥 ) ↑ 2 ) ) |
| 234 |
54
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ+ ) |
| 235 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 236 |
|
1le1 |
⊢ 1 ≤ 1 |
| 237 |
236
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ 1 ) |
| 238 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) |
| 239 |
9
|
rexrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 240 |
|
pnfge |
⊢ ( 𝐴 ∈ ℝ* → 𝐴 ≤ +∞ ) |
| 241 |
239 240
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ≤ +∞ ) |
| 242 |
94 95 96 97 99 103 104 115 109 117 209 211 230 50 233 234 235 237 238 241 44
|
dvfsum2 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 𝐴 ) − ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝑥 · ( ( ( log ‘ 𝑥 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝑥 ) ) ) ) ) ) ) ‘ 1 ) ) ) ≤ ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 243 |
92 242
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) − - 2 ) ) ≤ ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 244 |
24 29 12 38 243
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) ≤ ( ( log ‘ 𝐴 ) ↑ 2 ) ) |
| 245 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 2 ∈ ℝ ) |
| 246 |
22 245 12
|
lesubaddd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) − 2 ) ≤ ( ( log ‘ 𝐴 ) ↑ 2 ) ↔ ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) ≤ ( ( ( log ‘ 𝐴 ) ↑ 2 ) + 2 ) ) ) |
| 247 |
244 246
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) ↑ 2 ) − ( 𝐴 · ( ( ( log ‘ 𝐴 ) ↑ 2 ) + ( 2 − ( 2 · ( log ‘ 𝐴 ) ) ) ) ) ) ) ≤ ( ( ( log ‘ 𝐴 ) ↑ 2 ) + 2 ) ) |