Step |
Hyp |
Ref |
Expression |
1 |
|
log2ublem1.1 |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) ≤ 𝐵 |
2 |
|
log2ublem1.2 |
⊢ 𝐴 ∈ ℝ |
3 |
|
log2ublem1.3 |
⊢ 𝐷 ∈ ℕ0 |
4 |
|
log2ublem1.4 |
⊢ 𝐸 ∈ ℕ |
5 |
|
log2ublem1.5 |
⊢ 𝐵 ∈ ℕ0 |
6 |
|
log2ublem1.6 |
⊢ 𝐹 ∈ ℕ0 |
7 |
|
log2ublem1.7 |
⊢ 𝐶 = ( 𝐴 + ( 𝐷 / 𝐸 ) ) |
8 |
|
log2ublem1.8 |
⊢ ( 𝐵 + 𝐹 ) = 𝐺 |
9 |
|
log2ublem1.9 |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ≤ ( 𝐸 · 𝐹 ) |
10 |
|
3nn |
⊢ 3 ∈ ℕ |
11 |
|
7nn0 |
⊢ 7 ∈ ℕ0 |
12 |
|
nnexpcl |
⊢ ( ( 3 ∈ ℕ ∧ 7 ∈ ℕ0 ) → ( 3 ↑ 7 ) ∈ ℕ ) |
13 |
10 11 12
|
mp2an |
⊢ ( 3 ↑ 7 ) ∈ ℕ |
14 |
|
5nn |
⊢ 5 ∈ ℕ |
15 |
|
7nn |
⊢ 7 ∈ ℕ |
16 |
14 15
|
nnmulcli |
⊢ ( 5 · 7 ) ∈ ℕ |
17 |
13 16
|
nnmulcli |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ |
18 |
17
|
nncni |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℂ |
19 |
3
|
nn0cni |
⊢ 𝐷 ∈ ℂ |
20 |
4
|
nncni |
⊢ 𝐸 ∈ ℂ |
21 |
4
|
nnne0i |
⊢ 𝐸 ≠ 0 |
22 |
18 19 20 21
|
divassi |
⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) / 𝐸 ) = ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) |
23 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
24 |
23 11
|
nn0expcli |
⊢ ( 3 ↑ 7 ) ∈ ℕ0 |
25 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
26 |
25 11
|
nn0mulcli |
⊢ ( 5 · 7 ) ∈ ℕ0 |
27 |
24 26
|
nn0mulcli |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℕ0 |
28 |
27 3
|
nn0mulcli |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ∈ ℕ0 |
29 |
28
|
nn0rei |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ∈ ℝ |
30 |
6
|
nn0rei |
⊢ 𝐹 ∈ ℝ |
31 |
4
|
nnrei |
⊢ 𝐸 ∈ ℝ |
32 |
4
|
nngt0i |
⊢ 0 < 𝐸 |
33 |
31 32
|
pm3.2i |
⊢ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) |
34 |
|
ledivmul |
⊢ ( ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ∈ ℝ ∧ 𝐹 ∈ ℝ ∧ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ) → ( ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) / 𝐸 ) ≤ 𝐹 ↔ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ≤ ( 𝐸 · 𝐹 ) ) ) |
35 |
29 30 33 34
|
mp3an |
⊢ ( ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) / 𝐸 ) ≤ 𝐹 ↔ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) ≤ ( 𝐸 · 𝐹 ) ) |
36 |
9 35
|
mpbir |
⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐷 ) / 𝐸 ) ≤ 𝐹 |
37 |
22 36
|
eqbrtrri |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ≤ 𝐹 |
38 |
17
|
nnrei |
⊢ ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) ∈ ℝ |
39 |
38 2
|
remulcli |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) ∈ ℝ |
40 |
3
|
nn0rei |
⊢ 𝐷 ∈ ℝ |
41 |
|
nndivre |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐸 ∈ ℕ ) → ( 𝐷 / 𝐸 ) ∈ ℝ ) |
42 |
40 4 41
|
mp2an |
⊢ ( 𝐷 / 𝐸 ) ∈ ℝ |
43 |
38 42
|
remulcli |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ∈ ℝ |
44 |
5
|
nn0rei |
⊢ 𝐵 ∈ ℝ |
45 |
39 43 44 30
|
le2addi |
⊢ ( ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) ≤ 𝐵 ∧ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ≤ 𝐹 ) → ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) + ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ) ≤ ( 𝐵 + 𝐹 ) ) |
46 |
1 37 45
|
mp2an |
⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) + ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ) ≤ ( 𝐵 + 𝐹 ) |
47 |
7
|
oveq2i |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐶 ) = ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐴 + ( 𝐷 / 𝐸 ) ) ) |
48 |
2
|
recni |
⊢ 𝐴 ∈ ℂ |
49 |
42
|
recni |
⊢ ( 𝐷 / 𝐸 ) ∈ ℂ |
50 |
18 48 49
|
adddii |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐴 + ( 𝐷 / 𝐸 ) ) ) = ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) + ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ) |
51 |
47 50
|
eqtr2i |
⊢ ( ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐴 ) + ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · ( 𝐷 / 𝐸 ) ) ) = ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐶 ) |
52 |
46 51 8
|
3brtr3i |
⊢ ( ( ( 3 ↑ 7 ) · ( 5 · 7 ) ) · 𝐶 ) ≤ 𝐺 |