| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 2 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 3 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 4 |  | eldifsn | ⊢ ( 1  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 1  ∈  ℂ  ∧  1  ≠  0 ) ) | 
						
							| 5 | 2 3 4 | mpbir2an | ⊢ 1  ∈  ( ℂ  ∖  { 0 } ) | 
						
							| 6 |  | logbval | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  1  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  1 )  =  ( ( log ‘ 1 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 7 | 5 6 | mpan2 | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( 𝐵  logb  1 )  =  ( ( log ‘ 1 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 8 | 1 7 | sylbir | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( 𝐵  logb  1 )  =  ( ( log ‘ 1 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 9 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 10 | 9 | oveq1i | ⊢ ( ( log ‘ 1 )  /  ( log ‘ 𝐵 ) )  =  ( 0  /  ( log ‘ 𝐵 ) ) | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  𝐵  ∈  ℂ ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  𝐵  ≠  0 ) | 
						
							| 13 | 11 12 | logcld | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 14 |  | logccne0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 15 | 13 14 | div0d | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( 0  /  ( log ‘ 𝐵 ) )  =  0 ) | 
						
							| 16 | 10 15 | eqtrid | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( ( log ‘ 1 )  /  ( log ‘ 𝐵 ) )  =  0 ) | 
						
							| 17 | 8 16 | eqtrd | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( 𝐵  logb  1 )  =  0 ) |