Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
2 |
|
logcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
3 |
1 2
|
sylbi |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
5 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
logccne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 ) |
8 |
6 7
|
jca |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ≠ 0 ) ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ≠ 0 ) ) |
10 |
|
logcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
11 |
10
|
3adant3 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
12 |
|
logccne0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
13 |
11 12
|
jca |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) |
15 |
|
divcan7 |
⊢ ( ( ( log ‘ 𝑋 ) ∈ ℂ ∧ ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐴 ) ≠ 0 ) ∧ ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) / ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐴 ) ) ) |
16 |
4 9 14 15
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) / ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐴 ) ) ) |
17 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
18 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
19 |
17 18
|
sylanbr |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
20 |
19
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
21 |
17
|
biimpri |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
22 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
23 |
22
|
biimpri |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
24 |
23
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
25 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
26 |
21 24 25
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
28 |
20 27
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝐵 logb 𝑋 ) / ( 𝐵 logb 𝐴 ) ) = ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) / ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) ) |
29 |
|
eldifpr |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ) |
30 |
|
logbval |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐴 ) ) ) |
31 |
29 30
|
sylanbr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐴 ) ) ) |
32 |
31
|
3adant2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐴 ) ) ) |
33 |
16 28 32
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 logb 𝑋 ) = ( ( 𝐵 logb 𝑋 ) / ( 𝐵 logb 𝐴 ) ) ) |