| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logbval | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝑋 )  =  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 2 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 3 |  | logcl | ⊢ ( ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 6 |  | eldifi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  𝐵  ∈  ℂ ) | 
						
							| 7 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 8 | 7 | simp2bi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  𝐵  ≠  0 ) | 
						
							| 9 | 6 8 | logcld | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 11 |  | logccne0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 12 | 7 11 | sylbi | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ≠  0 ) | 
						
							| 14 | 5 10 13 | divcld | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 15 | 1 14 | eqeltrd | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝑋 )  ∈  ℂ ) |