| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							logbmpt | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( curry   logb  ‘ 𝐵 )  =  ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ( log ‘ 𝑦 )  /  ( log ‘ 𝐵 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							logcl | 
							⊢ ( ( 𝑦  ∈  ℂ  ∧  𝑦  ≠  0 )  →  ( log ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylbi | 
							⊢ ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  →  ( log ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝑦 )  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							logcl | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( log ‘ 𝐵 )  ∈  ℂ )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant3 | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ∈  ℂ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ∈  ℂ )  | 
						
						
							| 9 | 
							
								
							 | 
							logccne0 | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( log ‘ 𝐵 )  ≠  0 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( log ‘ 𝐵 )  ≠  0 )  | 
						
						
							| 11 | 
							
								5 8 10
							 | 
							divcld | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ( log ‘ 𝑦 )  /  ( log ‘ 𝐵 ) )  ∈  ℂ )  | 
						
						
							| 12 | 
							
								1 11
							 | 
							fmpt3d | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( curry   logb  ‘ 𝐵 ) : ( ℂ  ∖  { 0 } ) ⟶ ℂ )  |