| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-logb | 
							⊢  logb   =  ( 𝑥  ∈  ( ℂ  ∖  { 0 ,  1 } ) ,  𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ( log ‘ 𝑦 )  /  ( log ‘ 𝑥 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ovexd | 
							⊢ ( ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  ∧  ( 𝑥  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) ) )  →  ( ( log ‘ 𝑦 )  /  ( log ‘ 𝑥 ) )  ∈  V )  | 
						
						
							| 3 | 
							
								2
							 | 
							ralrimivva | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ∀ 𝑥  ∈  ( ℂ  ∖  { 0 ,  1 } ) ∀ 𝑦  ∈  ( ℂ  ∖  { 0 } ) ( ( log ‘ 𝑦 )  /  ( log ‘ 𝑥 ) )  ∈  V )  | 
						
						
							| 4 | 
							
								
							 | 
							cnex | 
							⊢ ℂ  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							difexg | 
							⊢ ( ℂ  ∈  V  →  ( ℂ  ∖  { 0 } )  ∈  V )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mp1i | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ℂ  ∖  { 0 } )  ∈  V )  | 
						
						
							| 7 | 
							
								
							 | 
							eldifpr | 
							⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpri | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 11 | 
							
								1 3 6 9 10
							 | 
							fvmpocurryd | 
							⊢ ( ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( ( curry   logb  ‘ 𝐵 ) ‘ 𝑋 )  =  ( 𝐵  logb  𝑋 ) )  |