| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifpr | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 ) ) | 
						
							| 2 | 1 | biimpri | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝐴  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 3 |  | eldifsn | ⊢ ( 𝐴  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 ) ) | 
						
							| 4 | 3 | biimpri | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝐴  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 6 |  | logbval | ⊢ ( ( 𝐴  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝐴  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐴  logb  𝐴 )  =  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐴 ) ) ) | 
						
							| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝐴  logb  𝐴 )  =  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐴 ) ) ) | 
						
							| 8 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 10 |  | logccne0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( log ‘ 𝐴 )  ≠  0 ) | 
						
							| 11 | 9 10 | dividd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( log ‘ 𝐴 )  /  ( log ‘ 𝐴 ) )  =  1 ) | 
						
							| 12 | 7 11 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝐴  logb  𝐴 )  =  1 ) |