Step |
Hyp |
Ref |
Expression |
1 |
|
loge |
⊢ ( log ‘ e ) = 1 |
2 |
1
|
a1i |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ e ) = 1 ) |
3 |
2
|
oveq2d |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( log ‘ 𝑦 ) / ( log ‘ e ) ) = ( ( log ‘ 𝑦 ) / 1 ) ) |
4 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
5 |
|
logcl |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
6 |
4 5
|
sylbi |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
7 |
6
|
div1d |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( log ‘ 𝑦 ) / 1 ) = ( log ‘ 𝑦 ) ) |
8 |
3 7
|
eqtrd |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( ( log ‘ 𝑦 ) / ( log ‘ e ) ) = ( log ‘ 𝑦 ) ) |
9 |
8
|
mpteq2ia |
⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ e ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) |
10 |
|
ere |
⊢ e ∈ ℝ |
11 |
10
|
recni |
⊢ e ∈ ℂ |
12 |
|
ene0 |
⊢ e ≠ 0 |
13 |
|
ene1 |
⊢ e ≠ 1 |
14 |
|
logbmpt |
⊢ ( ( e ∈ ℂ ∧ e ≠ 0 ∧ e ≠ 1 ) → ( curry logb ‘ e ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ e ) ) ) ) |
15 |
11 12 13 14
|
mp3an |
⊢ ( curry logb ‘ e ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ e ) ) ) |
16 |
|
logf1o |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
17 |
|
f1ofn |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log Fn ( ℂ ∖ { 0 } ) ) |
18 |
16 17
|
ax-mp |
⊢ log Fn ( ℂ ∖ { 0 } ) |
19 |
|
dffn5 |
⊢ ( log Fn ( ℂ ∖ { 0 } ) ↔ log = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) ) |
20 |
18 19
|
mpbi |
⊢ log = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( log ‘ 𝑦 ) ) |
21 |
9 15 20
|
3eqtr4i |
⊢ ( curry logb ‘ e ) = log |