Step |
Hyp |
Ref |
Expression |
1 |
|
df-logb |
⊢ logb = ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ) |
2 |
|
ovexd |
⊢ ( ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ∧ ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑦 ∈ ( ℂ ∖ { 0 } ) ) ) → ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ∈ V ) |
3 |
2
|
ralrimivva |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ∀ 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) ∀ 𝑦 ∈ ( ℂ ∖ { 0 } ) ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ∈ V ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
6 |
|
elsng |
⊢ ( 1 ∈ ℂ → ( 1 ∈ { 0 } ↔ 1 = 0 ) ) |
7 |
4 6
|
ax-mp |
⊢ ( 1 ∈ { 0 } ↔ 1 = 0 ) |
8 |
5 7
|
nemtbir |
⊢ ¬ 1 ∈ { 0 } |
9 |
|
eldif |
⊢ ( 1 ∈ ( ℂ ∖ { 0 } ) ↔ ( 1 ∈ ℂ ∧ ¬ 1 ∈ { 0 } ) ) |
10 |
4 8 9
|
mpbir2an |
⊢ 1 ∈ ( ℂ ∖ { 0 } ) |
11 |
10
|
ne0ii |
⊢ ( ℂ ∖ { 0 } ) ≠ ∅ |
12 |
11
|
a1i |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( ℂ ∖ { 0 } ) ≠ ∅ ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
13
|
difexi |
⊢ ( ℂ ∖ { 0 } ) ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( ℂ ∖ { 0 } ) ∈ V ) |
16 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
17 |
16
|
biimpri |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
18 |
1 3 12 15 17
|
mpocurryvald |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ⦋ 𝐵 / 𝑥 ⦌ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ) ) |
19 |
|
csbov2g |
⊢ ( 𝐵 ∈ ℂ → ⦋ 𝐵 / 𝑥 ⦌ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑦 ) / ⦋ 𝐵 / 𝑥 ⦌ ( log ‘ 𝑥 ) ) ) |
20 |
|
csbfv |
⊢ ⦋ 𝐵 / 𝑥 ⦌ ( log ‘ 𝑥 ) = ( log ‘ 𝐵 ) |
21 |
20
|
a1i |
⊢ ( 𝐵 ∈ ℂ → ⦋ 𝐵 / 𝑥 ⦌ ( log ‘ 𝑥 ) = ( log ‘ 𝐵 ) ) |
22 |
21
|
oveq2d |
⊢ ( 𝐵 ∈ ℂ → ( ( log ‘ 𝑦 ) / ⦋ 𝐵 / 𝑥 ⦌ ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) |
23 |
19 22
|
eqtrd |
⊢ ( 𝐵 ∈ ℂ → ⦋ 𝐵 / 𝑥 ⦌ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ⦋ 𝐵 / 𝑥 ⦌ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) |
25 |
24
|
mpteq2dv |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ⦋ 𝐵 / 𝑥 ⦌ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) ) |
26 |
18 25
|
eqtrd |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( curry logb ‘ 𝐵 ) = ( 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) ) |