Step |
Hyp |
Ref |
Expression |
1 |
|
prmuz2 |
⊢ ( 𝑋 ∈ ℙ → 𝑋 ∈ ( ℤ≥ ‘ 2 ) ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵 ) → 𝑋 ∈ ( ℤ≥ ‘ 2 ) ) |
3 |
|
prmuz2 |
⊢ ( 𝐵 ∈ ℙ → 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵 ) → 𝐵 ∈ ( ℤ≥ ‘ 2 ) ) |
5 |
|
prmrp |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ) → ( ( 𝑋 gcd 𝐵 ) = 1 ↔ 𝑋 ≠ 𝐵 ) ) |
6 |
5
|
biimp3ar |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵 ) → ( 𝑋 gcd 𝐵 ) = 1 ) |
7 |
|
logbgcd1irr |
⊢ ( ( 𝑋 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑋 gcd 𝐵 ) = 1 ) → ( 𝐵 logb 𝑋 ) ∈ ( ℝ ∖ ℚ ) ) |
8 |
2 4 6 7
|
syl3anc |
⊢ ( ( 𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵 ) → ( 𝐵 logb 𝑋 ) ∈ ( ℝ ∖ ℚ ) ) |