Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝐵 → ( log ‘ 𝑥 ) = ( log ‘ 𝐵 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = 𝐵 → ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) = ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( log ‘ 𝑦 ) = ( log ‘ 𝑋 ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑦 = 𝑋 → ( ( log ‘ 𝑦 ) / ( log ‘ 𝐵 ) ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
5 |
|
df-logb |
⊢ logb = ( 𝑥 ∈ ( ℂ ∖ { 0 , 1 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( log ‘ 𝑦 ) / ( log ‘ 𝑥 ) ) ) |
6 |
|
ovex |
⊢ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ∈ V |
7 |
2 4 5 6
|
ovmpo |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |