Metamath Proof Explorer


Theorem logccne0

Description: The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017)

Ref Expression
Assertion logccne0 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ≠ 1 )
2 1 neneqd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ¬ 𝐴 = 1 )
3 logeq0im1 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → 𝐴 = 1 )
4 3 3expia ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( log ‘ 𝐴 ) = 0 → 𝐴 = 1 ) )
5 4 3adant3 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( log ‘ 𝐴 ) = 0 → 𝐴 = 1 ) )
6 2 5 mtod ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ¬ ( log ‘ 𝐴 ) = 0 )
7 6 neqned ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 )