Description: The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | logccne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ≠ 1 ) | |
2 | 1 | neneqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ¬ 𝐴 = 1 ) |
3 | logeq0im1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → 𝐴 = 1 ) | |
4 | 3 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( log ‘ 𝐴 ) = 0 → 𝐴 = 1 ) ) |
5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( log ‘ 𝐴 ) = 0 → 𝐴 = 1 ) ) |
6 | 2 5 | mtod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ¬ ( log ‘ 𝐴 ) = 0 ) |
7 | 6 | neqned | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 ) |