Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
logcnlem.s |
⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
3 |
|
logcnlem.t |
⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) |
4 |
|
logcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
5 |
|
logcnlem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ+ ) |
7 |
1
|
ellogdm |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
8 |
7
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
10 |
9
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
13 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
14 |
9 13
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
15 |
7
|
simprbi |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
17 |
14 16
|
sylbird |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ+ ) ) |
18 |
17
|
necon3bd |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ ℝ+ → ( ℑ ‘ 𝐴 ) ≠ 0 ) ) |
19 |
18
|
imp |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
20 |
12 19
|
absrpcld |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ+ ) |
21 |
6 20
|
ifclda |
⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ+ ) |
22 |
2 21
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ+ ) |
23 |
1
|
logdmn0 |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
24 |
4 23
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
25 |
9 24
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
26 |
|
1rp |
⊢ 1 ∈ ℝ+ |
27 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) |
28 |
26 5 27
|
sylancr |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
29 |
5 28
|
rpdivcld |
⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ+ ) |
30 |
25 29
|
rpmulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ+ ) |
31 |
3 30
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
32 |
22 31
|
ifcld |
⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ+ ) |