| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | logcnlem.s | ⊢ 𝑆  =  if ( 𝐴  ∈  ℝ+ ,  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 3 |  | logcnlem.t | ⊢ 𝑇  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) ) | 
						
							| 4 |  | logcnlem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 5 |  | logcnlem.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 6 |  | logcnlem.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 7 |  | logcnlem.l | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 ) ) | 
						
							| 8 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 9 | 8 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - π  ∈  ℝ ) | 
						
							| 11 | 1 | ellogdm | ⊢ ( 𝐵  ∈  𝐷  ↔  ( 𝐵  ∈  ℂ  ∧  ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ+ ) ) ) | 
						
							| 12 | 11 | simplbi | ⊢ ( 𝐵  ∈  𝐷  →  𝐵  ∈  ℂ ) | 
						
							| 13 | 6 12 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 14 | 1 | logdmn0 | ⊢ ( 𝐵  ∈  𝐷  →  𝐵  ≠  0 ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 16 | 13 15 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 17 | 16 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 19 | 1 | ellogdm | ⊢ ( 𝐴  ∈  𝐷  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) ) | 
						
							| 20 | 19 | simplbi | ⊢ ( 𝐴  ∈  𝐷  →  𝐴  ∈  ℂ ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 22 | 1 | logdmn0 | ⊢ ( 𝐴  ∈  𝐷  →  𝐴  ≠  0 ) | 
						
							| 23 | 4 22 | syl | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 24 | 21 23 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 25 | 24 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 26 | 17 25 | resubcld | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 28 | 13 15 | logimcld | ⊢ ( 𝜑  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐵 ) )  ≤  π ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( 𝜑  →  - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 31 | 17 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 33 | 32 | subid1d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 )  =  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 34 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 35 |  | 0red | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  0  ∈  ℝ ) | 
						
							| 36 |  | argimlt0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 37 | 21 36 | sylan | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 38 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( - π (,) 0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) ) | 
						
							| 40 | 39 | simprd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  0 ) | 
						
							| 41 | 34 35 18 40 | ltsub2dd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 42 | 33 41 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 43 | 10 18 27 30 42 | lttrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 44 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 45 |  | reim0b | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 46 | 21 45 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 47 | 19 | simprbi | ⊢ ( 𝐴  ∈  𝐷  →  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) | 
						
							| 48 | 4 47 | syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) | 
						
							| 49 | 46 48 | sylbird | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  =  0  →  𝐴  ∈  ℝ+ ) ) | 
						
							| 50 | 49 | imp | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 51 | 50 | relogcld | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 52 | 51 | reim0d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  =  0 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 ) ) | 
						
							| 54 | 31 | subid1d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 )  =  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 )  =  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 56 | 53 55 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 57 | 44 56 | breqtrrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 58 | 9 | a1i | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - π  ∈  ℝ ) | 
						
							| 59 | 25 | renegcld | ⊢ ( 𝜑  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 61 | 26 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 62 |  | argimgt0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π ) ) | 
						
							| 63 | 21 62 | sylan | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π ) ) | 
						
							| 64 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ( 0 (,) π )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) | 
						
							| 66 | 65 | simprd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) | 
						
							| 67 |  | ltneg | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π  ↔  - π  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 68 | 25 8 67 | sylancl | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π  ↔  - π  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π  ↔  - π  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 70 | 66 69 | mpbid | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - π  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 71 |  | df-neg | ⊢ - ( ℑ ‘ ( log ‘ 𝐴 ) )  =  ( 0  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 72 | 13 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 73 | 21 13 | imsubd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 75 | 21 13 | subcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 76 | 75 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 77 | 76 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 78 | 75 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 80 | 21 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 81 | 80 | imcld | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 82 |  | absimle | ⊢ ( ( 𝐴  −  𝐵 )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 83 | 75 82 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 84 | 76 78 | absled | ⊢ ( 𝜑  →  ( ( abs ‘ ( ℑ ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) )  ↔  ( - ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ∧  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) ) ) | 
						
							| 85 | 83 84 | mpbid | ⊢ ( 𝜑  →  ( - ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ∧  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 86 | 85 | simprd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ≤  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 88 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 89 | 88 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 90 | 21 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 91 | 90 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 92 | 91 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 93 | 92 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ+ )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 94 | 89 93 | ifclda | ⊢ ( 𝜑  →  if ( 𝐴  ∈  ℝ+ ,  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 95 | 2 94 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 96 | 21 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 97 | 5 | rpred | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 98 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 99 |  | rpaddcl | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑅  ∈  ℝ+ )  →  ( 1  +  𝑅 )  ∈  ℝ+ ) | 
						
							| 100 | 98 5 99 | sylancr | ⊢ ( 𝜑  →  ( 1  +  𝑅 )  ∈  ℝ+ ) | 
						
							| 101 | 97 100 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝑅  /  ( 1  +  𝑅 ) )  ∈  ℝ ) | 
						
							| 102 | 96 101 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) )  ∈  ℝ ) | 
						
							| 103 | 3 102 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 104 | 95 103 | ifcld | ⊢ ( 𝜑  →  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 )  ∈  ℝ ) | 
						
							| 105 |  | min1 | ⊢ ( ( 𝑆  ∈  ℝ  ∧  𝑇  ∈  ℝ )  →  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 )  ≤  𝑆 ) | 
						
							| 106 | 95 103 105 | syl2anc | ⊢ ( 𝜑  →  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 )  ≤  𝑆 ) | 
						
							| 107 | 78 104 95 7 106 | ltletrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆 ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆 ) | 
						
							| 109 |  | gt0ne0 | ⊢ ( ( ( ℑ ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 110 | 90 109 | sylan | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 111 | 88 46 | imbitrid | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ+  →  ( ℑ ‘ 𝐴 )  =  0 ) ) | 
						
							| 112 | 111 | necon3ad | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  ≠  0  →  ¬  𝐴  ∈  ℝ+ ) ) | 
						
							| 113 | 112 | imp | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  ≠  0 )  →  ¬  𝐴  ∈  ℝ+ ) | 
						
							| 114 |  | iffalse | ⊢ ( ¬  𝐴  ∈  ℝ+  →  if ( 𝐴  ∈  ℝ+ ,  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 115 | 2 114 | eqtrid | ⊢ ( ¬  𝐴  ∈  ℝ+  →  𝑆  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 116 | 113 115 | syl | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  ≠  0 )  →  𝑆  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 117 | 110 116 | syldan | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝑆  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 118 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 119 |  | ltle | ⊢ ( ( 0  ∈  ℝ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℝ )  →  ( 0  <  ( ℑ ‘ 𝐴 )  →  0  ≤  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 120 | 118 90 119 | sylancr | ⊢ ( 𝜑  →  ( 0  <  ( ℑ ‘ 𝐴 )  →  0  ≤  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 121 | 120 | imp | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  ≤  ( ℑ ‘ 𝐴 ) ) | 
						
							| 122 | 81 121 | absidd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 123 | 117 122 | eqtrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  𝑆  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 124 | 108 123 | breqtrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ℑ ‘ 𝐴 ) ) | 
						
							| 125 | 77 79 81 87 124 | lelttrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  <  ( ℑ ‘ 𝐴 ) ) | 
						
							| 126 | 74 125 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  <  ( ℑ ‘ 𝐴 ) ) | 
						
							| 127 | 91 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 128 | 127 | subid1d | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  0 )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 129 | 126 128 | breqtrrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  <  ( ( ℑ ‘ 𝐴 )  −  0 ) ) | 
						
							| 130 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 131 | 13 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 132 | 130 131 90 | ltsub2d | ⊢ ( 𝜑  →  ( 0  <  ( ℑ ‘ 𝐵 )  ↔  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  <  ( ( ℑ ‘ 𝐴 )  −  0 ) ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ 𝐵 )  ↔  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) )  <  ( ( ℑ ‘ 𝐴 )  −  0 ) ) ) | 
						
							| 134 | 129 133 | mpbird | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ 𝐵 ) ) | 
						
							| 135 |  | argimgt0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  0  <  ( ℑ ‘ 𝐵 ) )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( 0 (,) π ) ) | 
						
							| 136 | 72 134 135 | syl2anc | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( 0 (,) π ) ) | 
						
							| 137 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( 0 (,) π )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  π ) ) | 
						
							| 138 | 136 137 | syl | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  π ) ) | 
						
							| 139 | 138 | simpld | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 140 | 130 17 25 | ltsub1d | ⊢ ( 𝜑  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ↔  ( 0  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ↔  ( 0  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 142 | 139 141 | mpbid | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( 0  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 143 | 71 142 | eqbrtrid | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 144 | 58 60 61 70 143 | lttrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 145 |  | lttri4 | ⊢ ( ( ( ℑ ‘ 𝐴 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ℑ ‘ 𝐴 )  <  0  ∨  ( ℑ ‘ 𝐴 )  =  0  ∨  0  <  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 146 | 90 118 145 | sylancl | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  <  0  ∨  ( ℑ ‘ 𝐴 )  =  0  ∨  0  <  ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 147 | 43 57 144 146 | mpjao3dan | ⊢ ( 𝜑  →  - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 148 | 8 | a1i | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  π  ∈  ℝ ) | 
						
							| 149 | 34 | renegcld | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 150 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  𝐵  ∈  ℂ ) | 
						
							| 151 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 152 | 151 | subid1d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ 𝐴 )  −  0 )  =  ( ℑ ‘ 𝐴 ) ) | 
						
							| 153 | 90 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 154 | 78 | renegcld | ⊢ ( 𝜑  →  - ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 155 | 154 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 156 | 76 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 157 | 78 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 158 | 107 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆 ) | 
						
							| 159 | 118 | ltnri | ⊢ ¬  0  <  0 | 
						
							| 160 |  | breq1 | ⊢ ( ( ℑ ‘ 𝐴 )  =  0  →  ( ( ℑ ‘ 𝐴 )  <  0  ↔  0  <  0 ) ) | 
						
							| 161 | 159 160 | mtbiri | ⊢ ( ( ℑ ‘ 𝐴 )  =  0  →  ¬  ( ℑ ‘ 𝐴 )  <  0 ) | 
						
							| 162 | 161 | necon2ai | ⊢ ( ( ℑ ‘ 𝐴 )  <  0  →  ( ℑ ‘ 𝐴 )  ≠  0 ) | 
						
							| 163 | 162 116 | sylan2 | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  𝑆  =  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 164 |  | ltle | ⊢ ( ( ( ℑ ‘ 𝐴 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ℑ ‘ 𝐴 )  <  0  →  ( ℑ ‘ 𝐴 )  ≤  0 ) ) | 
						
							| 165 | 90 118 164 | sylancl | ⊢ ( 𝜑  →  ( ( ℑ ‘ 𝐴 )  <  0  →  ( ℑ ‘ 𝐴 )  ≤  0 ) ) | 
						
							| 166 | 165 | imp | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  ≤  0 ) | 
						
							| 167 | 153 166 | absnidd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 168 | 163 167 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  𝑆  =  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 169 | 158 168 | breqtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  - ( ℑ ‘ 𝐴 ) ) | 
						
							| 170 | 157 153 169 | ltnegcon2d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  <  - ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 171 | 85 | simpld | ⊢ ( 𝜑  →  - ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ℑ ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 172 | 171 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - ( abs ‘ ( 𝐴  −  𝐵 ) )  ≤  ( ℑ ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 173 | 153 155 156 170 172 | ltletrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  <  ( ℑ ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 174 | 73 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( 𝐴  −  𝐵 ) )  =  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 175 | 173 174 | breqtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐴 )  <  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 176 | 152 175 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ 𝐴 )  −  0 )  <  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) | 
						
							| 177 | 150 | imcld | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 178 | 177 35 153 | ltsub2d | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ 𝐵 )  <  0  ↔  ( ( ℑ ‘ 𝐴 )  −  0 )  <  ( ( ℑ ‘ 𝐴 )  −  ( ℑ ‘ 𝐵 ) ) ) ) | 
						
							| 179 | 176 178 | mpbird | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ 𝐵 )  <  0 ) | 
						
							| 180 |  | argimlt0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( ℑ ‘ 𝐵 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 181 | 150 179 180 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 182 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ( - π (,) 0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 183 | 181 182 | syl | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∧  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  0 ) ) | 
						
							| 184 | 183 | simprd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  0 ) | 
						
							| 185 | 18 35 34 184 | ltsub1dd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( 0  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 186 | 185 71 | breqtrrdi | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 187 | 39 | simpld | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 188 |  | ltnegcon1 | ⊢ ( ( π  ∈  ℝ  ∧  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ↔  - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) | 
						
							| 189 | 8 34 188 | sylancr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝐴 ) )  ↔  - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) ) | 
						
							| 190 | 187 189 | mpbid | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  - ( ℑ ‘ ( log ‘ 𝐴 ) )  <  π ) | 
						
							| 191 | 27 149 148 186 190 | lttrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  π ) | 
						
							| 192 | 27 148 191 | ltled | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  <  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 193 | 28 | simprd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ≤  π ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ≤  π ) | 
						
							| 195 | 56 194 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 196 | 8 | a1i | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  π  ∈  ℝ ) | 
						
							| 197 | 17 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 198 |  | 0red | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 199 | 25 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 200 | 65 | simpld | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) | 
						
							| 201 | 198 199 197 200 | ltsub2dd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 ) ) | 
						
							| 202 | 31 | adantr | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 203 | 202 | subid1d | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  0 )  =  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 204 | 201 203 | breqtrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) | 
						
							| 205 | 138 | simprd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  <  π ) | 
						
							| 206 | 61 197 196 204 205 | lttrd | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  <  π ) | 
						
							| 207 | 61 196 206 | ltled | ⊢ ( ( 𝜑  ∧  0  <  ( ℑ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 208 | 192 195 207 146 | mpjao3dan | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 209 | 147 208 | jca | ⊢ ( 𝜑  →  ( - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∧  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) ) |