Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
logcnlem.s |
⊢ 𝑆 = if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
3 |
|
logcnlem.t |
⊢ 𝑇 = ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) |
4 |
|
logcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
5 |
|
logcnlem.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
6 |
|
logcnlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
7 |
|
logcnlem.l |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ) |
8 |
|
pire |
⊢ π ∈ ℝ |
9 |
8
|
renegcli |
⊢ - π ∈ ℝ |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π ∈ ℝ ) |
11 |
1
|
ellogdm |
⊢ ( 𝐵 ∈ 𝐷 ↔ ( 𝐵 ∈ ℂ ∧ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ+ ) ) ) |
12 |
11
|
simplbi |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ∈ ℂ ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
14 |
1
|
logdmn0 |
⊢ ( 𝐵 ∈ 𝐷 → 𝐵 ≠ 0 ) |
15 |
6 14
|
syl |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
16 |
13 15
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐵 ) ∈ ℂ ) |
17 |
16
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
19 |
1
|
ellogdm |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
20 |
19
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
22 |
1
|
logdmn0 |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ≠ 0 ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
24 |
21 23
|
logcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
25 |
24
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
26 |
17 25
|
resubcld |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
28 |
13 15
|
logimcld |
⊢ ( 𝜑 → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
31 |
17
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
33 |
32
|
subid1d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
34 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
35 |
|
0red |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 0 ∈ ℝ ) |
36 |
|
argimlt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
37 |
21 36
|
sylan |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) ) |
38 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) ) |
40 |
39
|
simprd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < 0 ) |
41 |
34 35 18 40
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
42 |
33 41
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
43 |
10 18 27 30 42
|
lttrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
44 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
45 |
|
reim0b |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
46 |
21 45
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ↔ ( ℑ ‘ 𝐴 ) = 0 ) ) |
47 |
19
|
simprbi |
⊢ ( 𝐴 ∈ 𝐷 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
48 |
4 47
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) |
49 |
46 48
|
sylbird |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) = 0 → 𝐴 ∈ ℝ+ ) ) |
50 |
49
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ℝ+ ) |
51 |
50
|
relogcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
52 |
51
|
reim0d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) = 0 ) |
53 |
52
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
54 |
31
|
subid1d |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
56 |
53 55
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
57 |
44 56
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
58 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
59 |
25
|
renegcld |
⊢ ( 𝜑 → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
61 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
62 |
|
argimgt0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
63 |
21 62
|
sylan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) ) |
64 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
65 |
63 64
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
66 |
65
|
simprd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
67 |
|
ltneg |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
68 |
25 8 67
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ↔ - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
70 |
66 69
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
71 |
|
df-neg |
⊢ - ( ℑ ‘ ( log ‘ 𝐴 ) ) = ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
72 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐵 ∈ ℂ ) |
73 |
21 13
|
imsubd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
75 |
21 13
|
subcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
76 |
75
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
78 |
75
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
80 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
81 |
80
|
imcld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
82 |
|
absimle |
⊢ ( ( 𝐴 − 𝐵 ) ∈ ℂ → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
83 |
75 82
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
84 |
76 78
|
absled |
⊢ ( 𝜑 → ( ( abs ‘ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ↔ ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) ) |
85 |
83 84
|
mpbid |
⊢ ( 𝜑 → ( - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∧ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) ) |
86 |
85
|
simprd |
⊢ ( 𝜑 → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
88 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
89 |
88
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
90 |
21
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
91 |
90
|
recnd |
⊢ ( 𝜑 → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
92 |
91
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ ℝ+ ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) ∈ ℝ ) |
94 |
89 93
|
ifclda |
⊢ ( 𝜑 → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) ∈ ℝ ) |
95 |
2 94
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
96 |
21
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
97 |
5
|
rpred |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
98 |
|
1rp |
⊢ 1 ∈ ℝ+ |
99 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑅 ∈ ℝ+ ) → ( 1 + 𝑅 ) ∈ ℝ+ ) |
100 |
98 5 99
|
sylancr |
⊢ ( 𝜑 → ( 1 + 𝑅 ) ∈ ℝ+ ) |
101 |
97 100
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝑅 / ( 1 + 𝑅 ) ) ∈ ℝ ) |
102 |
96 101
|
remulcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) · ( 𝑅 / ( 1 + 𝑅 ) ) ) ∈ ℝ ) |
103 |
3 102
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
104 |
95 103
|
ifcld |
⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ∈ ℝ ) |
105 |
|
min1 |
⊢ ( ( 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ ) → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) |
106 |
95 103 105
|
syl2anc |
⊢ ( 𝜑 → if ( 𝑆 ≤ 𝑇 , 𝑆 , 𝑇 ) ≤ 𝑆 ) |
107 |
78 104 95 7 106
|
ltletrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
108 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
109 |
|
gt0ne0 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
110 |
90 109
|
sylan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
111 |
88 46
|
syl5ib |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ+ → ( ℑ ‘ 𝐴 ) = 0 ) ) |
112 |
111
|
necon3ad |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) ≠ 0 → ¬ 𝐴 ∈ ℝ+ ) ) |
113 |
112
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → ¬ 𝐴 ∈ ℝ+ ) |
114 |
|
iffalse |
⊢ ( ¬ 𝐴 ∈ ℝ+ → if ( 𝐴 ∈ ℝ+ , 𝐴 , ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
115 |
2 114
|
syl5eq |
⊢ ( ¬ 𝐴 ∈ ℝ+ → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
116 |
113 115
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) ≠ 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
117 |
110 116
|
syldan |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
118 |
|
0re |
⊢ 0 ∈ ℝ |
119 |
|
ltle |
⊢ ( ( 0 ∈ ℝ ∧ ( ℑ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) |
120 |
118 90 119
|
sylancr |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐴 ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) ) |
121 |
120
|
imp |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ≤ ( ℑ ‘ 𝐴 ) ) |
122 |
81 121
|
absidd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = ( ℑ ‘ 𝐴 ) ) |
123 |
117 122
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 𝑆 = ( ℑ ‘ 𝐴 ) ) |
124 |
108 123
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
125 |
77 79 81 87 124
|
lelttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
126 |
74 125
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ℑ ‘ 𝐴 ) ) |
127 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
128 |
127
|
subid1d |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
129 |
126 128
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) |
130 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
131 |
13
|
imcld |
⊢ ( 𝜑 → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
132 |
130 131 90
|
ltsub2d |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ 𝐵 ) ↔ ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) < ( ( ℑ ‘ 𝐴 ) − 0 ) ) ) |
134 |
129 133
|
mpbird |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ 𝐵 ) ) |
135 |
|
argimgt0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 0 < ( ℑ ‘ 𝐵 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) |
136 |
72 134 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) ) |
137 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( 0 (,) π ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) |
138 |
136 137
|
syl |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) ) |
139 |
138
|
simpld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
140 |
130 17 25
|
ltsub1d |
⊢ ( 𝜑 → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 < ( ℑ ‘ ( log ‘ 𝐵 ) ) ↔ ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
142 |
139 141
|
mpbid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
143 |
71 142
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
144 |
58 60 61 70 143
|
lttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
145 |
|
lttri4 |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) |
146 |
90 118 145
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 ∨ ( ℑ ‘ 𝐴 ) = 0 ∨ 0 < ( ℑ ‘ 𝐴 ) ) ) |
147 |
43 57 144 146
|
mpjao3dan |
⊢ ( 𝜑 → - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
148 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → π ∈ ℝ ) |
149 |
34
|
renegcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
150 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝐵 ∈ ℂ ) |
151 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
152 |
151
|
subid1d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) = ( ℑ ‘ 𝐴 ) ) |
153 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
154 |
78
|
renegcld |
⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
156 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
157 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) ∈ ℝ ) |
158 |
107
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < 𝑆 ) |
159 |
118
|
ltnri |
⊢ ¬ 0 < 0 |
160 |
|
breq1 |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ( ( ℑ ‘ 𝐴 ) < 0 ↔ 0 < 0 ) ) |
161 |
159 160
|
mtbiri |
⊢ ( ( ℑ ‘ 𝐴 ) = 0 → ¬ ( ℑ ‘ 𝐴 ) < 0 ) |
162 |
161
|
necon2ai |
⊢ ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≠ 0 ) |
163 |
162 116
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) |
164 |
|
ltle |
⊢ ( ( ( ℑ ‘ 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
165 |
90 118 164
|
sylancl |
⊢ ( 𝜑 → ( ( ℑ ‘ 𝐴 ) < 0 → ( ℑ ‘ 𝐴 ) ≤ 0 ) ) |
166 |
165
|
imp |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) ≤ 0 ) |
167 |
153 166
|
absnidd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( ℑ ‘ 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
168 |
163 167
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → 𝑆 = - ( ℑ ‘ 𝐴 ) ) |
169 |
158 168
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) < - ( ℑ ‘ 𝐴 ) ) |
170 |
157 153 169
|
ltnegcon2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < - ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
171 |
85
|
simpld |
⊢ ( 𝜑 → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( abs ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
173 |
153 155 156 170 172
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ℑ ‘ ( 𝐴 − 𝐵 ) ) ) |
174 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( 𝐴 − 𝐵 ) ) = ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
175 |
173 174
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐴 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
176 |
152 175
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) |
177 |
150
|
imcld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) ∈ ℝ ) |
178 |
177 35 153
|
ltsub2d |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ 𝐵 ) < 0 ↔ ( ( ℑ ‘ 𝐴 ) − 0 ) < ( ( ℑ ‘ 𝐴 ) − ( ℑ ‘ 𝐵 ) ) ) ) |
179 |
176 178
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ 𝐵 ) < 0 ) |
180 |
|
argimlt0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ℑ ‘ 𝐵 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) |
181 |
150 179 180
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) ) |
182 |
|
eliooord |
⊢ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ( - π (,) 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) |
183 |
181 182
|
syl |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐵 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) ) |
184 |
183
|
simprd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < 0 ) |
185 |
18 35 34 184
|
ltsub1dd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( 0 − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
186 |
185 71
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
187 |
39
|
simpld |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
188 |
|
ltnegcon1 |
⊢ ( ( π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
189 |
8 34 188
|
sylancr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ↔ - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) ) |
190 |
187 189
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → - ( ℑ ‘ ( log ‘ 𝐴 ) ) < π ) |
191 |
27 149 148 186 190
|
lttrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
192 |
27 148 191
|
ltled |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) < 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
193 |
28
|
simprd |
⊢ ( 𝜑 → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ≤ π ) |
195 |
56 194
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ℑ ‘ 𝐴 ) = 0 ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
196 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → π ∈ ℝ ) |
197 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℝ ) |
198 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
199 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
200 |
65
|
simpld |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → 0 < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
201 |
198 199 197 200
|
ltsub2dd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) ) |
202 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) ∈ ℂ ) |
203 |
202
|
subid1d |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − 0 ) = ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
204 |
201 203
|
breqtrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( ℑ ‘ ( log ‘ 𝐵 ) ) ) |
205 |
138
|
simprd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐵 ) ) < π ) |
206 |
61 197 196 204 205
|
lttrd |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < π ) |
207 |
61 196 206
|
ltled |
⊢ ( ( 𝜑 ∧ 0 < ( ℑ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
208 |
192 195 207 146
|
mpjao3dan |
⊢ ( 𝜑 → ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
209 |
147 208
|
jca |
⊢ ( 𝜑 → ( - π < ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( ( ℑ ‘ ( log ‘ 𝐵 ) ) − ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |