| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | logcnlem.s | ⊢ 𝑆  =  if ( 𝐴  ∈  ℝ+ ,  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐴 ) ) ) | 
						
							| 3 |  | logcnlem.t | ⊢ 𝑇  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) ) | 
						
							| 4 |  | logcnlem.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 5 |  | logcnlem.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 6 |  | logcnlem.b | ⊢ ( 𝜑  →  𝐵  ∈  𝐷 ) | 
						
							| 7 |  | logcnlem.l | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 ) ) | 
						
							| 8 | 1 | ellogdm | ⊢ ( 𝐴  ∈  𝐷  ↔  ( 𝐴  ∈  ℂ  ∧  ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ+ ) ) ) | 
						
							| 9 | 8 | simplbi | ⊢ ( 𝐴  ∈  𝐷  →  𝐴  ∈  ℂ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 11 | 1 | logdmn0 | ⊢ ( 𝐴  ∈  𝐷  →  𝐴  ≠  0 ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  𝐴  ≠  0 ) | 
						
							| 13 | 10 12 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 14 | 13 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 15 | 14 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 16 | 1 | ellogdm | ⊢ ( 𝐵  ∈  𝐷  ↔  ( 𝐵  ∈  ℂ  ∧  ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ+ ) ) ) | 
						
							| 17 | 16 | simplbi | ⊢ ( 𝐵  ∈  𝐷  →  𝐵  ∈  ℂ ) | 
						
							| 18 | 6 17 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 19 | 1 | logdmn0 | ⊢ ( 𝐵  ∈  𝐷  →  𝐵  ≠  0 ) | 
						
							| 20 | 6 19 | syl | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 21 | 18 20 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 22 | 21 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝐵 ) )  ∈  ℂ ) | 
						
							| 24 | 15 23 | abssubd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  −  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) )  =  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | 
						
							| 25 | 21 13 | imsubd | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 26 |  | efsub | ⊢ ( ( ( log ‘ 𝐵 )  ∈  ℂ  ∧  ( log ‘ 𝐴 )  ∈  ℂ )  →  ( exp ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log ‘ 𝐵 ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 27 | 21 13 26 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( ( exp ‘ ( log ‘ 𝐵 ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 28 |  | eflog | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 29 | 18 20 28 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 30 |  | eflog | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 31 | 10 12 30 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( log ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 32 | 29 31 | oveq12d | ⊢ ( 𝜑  →  ( ( exp ‘ ( log ‘ 𝐵 ) )  /  ( exp ‘ ( log ‘ 𝐴 ) ) )  =  ( 𝐵  /  𝐴 ) ) | 
						
							| 33 | 27 32 | eqtrd | ⊢ ( 𝜑  →  ( exp ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( 𝐵  /  𝐴 ) ) | 
						
							| 34 | 18 10 12 | divcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐴 )  ∈  ℂ ) | 
						
							| 35 | 18 10 20 12 | divne0d | ⊢ ( 𝜑  →  ( 𝐵  /  𝐴 )  ≠  0 ) | 
						
							| 36 | 21 13 | subcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 37 | 1 2 3 4 5 6 7 | logcnlem3 | ⊢ ( 𝜑  →  ( - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ∧  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) ) | 
						
							| 38 | 37 | simpld | ⊢ ( 𝜑  →  - π  <  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | 
						
							| 39 | 38 25 | breqtrrd | ⊢ ( 𝜑  →  - π  <  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) ) ) | 
						
							| 40 | 37 | simprd | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 41 | 25 40 | eqbrtrd | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  ≤  π ) | 
						
							| 42 |  | ellogrn | ⊢ ( ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ∈  ran  log  ↔  ( ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ∈  ℂ  ∧  - π  <  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  ∧  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  ≤  π ) ) | 
						
							| 43 | 36 39 41 42 | syl3anbrc | ⊢ ( 𝜑  →  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ∈  ran  log ) | 
						
							| 44 |  | logeftb | ⊢ ( ( ( 𝐵  /  𝐴 )  ∈  ℂ  ∧  ( 𝐵  /  𝐴 )  ≠  0  ∧  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ∈  ran  log )  →  ( ( log ‘ ( 𝐵  /  𝐴 ) )  =  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ↔  ( exp ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 45 | 34 35 43 44 | syl3anc | ⊢ ( 𝜑  →  ( ( log ‘ ( 𝐵  /  𝐴 ) )  =  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  ↔  ( exp ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 46 | 33 45 | mpbird | ⊢ ( 𝜑  →  ( log ‘ ( 𝐵  /  𝐴 ) )  =  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 47 | 46 | eqcomd | ⊢ ( 𝜑  →  ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) )  =  ( log ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 48 | 47 | fveq2d | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( log ‘ 𝐵 )  −  ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 49 | 25 48 | eqtr3d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) )  =  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 50 | 49 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐵 ) )  −  ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )  =  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 51 | 24 50 | eqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  −  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) )  =  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 52 | 34 35 | logcld | ⊢ ( 𝜑  →  ( log ‘ ( 𝐵  /  𝐴 ) )  ∈  ℂ ) | 
						
							| 53 | 52 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 54 | 53 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 55 | 54 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 56 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 57 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 58 | 10 18 | subcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 59 | 58 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ ) | 
						
							| 60 | 10 12 | absrpcld | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 61 | 59 60 | rerpdivcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 62 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  ∈  ℝ )  →  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 63 | 57 61 62 | sylancr | ⊢ ( 𝜑  →  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 64 | 34 | recld | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 65 | 10 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 66 | 5 | rpred | ⊢ ( 𝜑  →  𝑅  ∈  ℝ ) | 
						
							| 67 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 68 |  | rpaddcl | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑅  ∈  ℝ+ )  →  ( 1  +  𝑅 )  ∈  ℝ+ ) | 
						
							| 69 | 67 5 68 | sylancr | ⊢ ( 𝜑  →  ( 1  +  𝑅 )  ∈  ℝ+ ) | 
						
							| 70 | 66 69 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝑅  /  ( 1  +  𝑅 ) )  ∈  ℝ ) | 
						
							| 71 | 65 70 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) )  ∈  ℝ ) | 
						
							| 72 | 3 71 | eqeltrid | ⊢ ( 𝜑  →  𝑇  ∈  ℝ ) | 
						
							| 73 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 75 | 10 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 76 | 75 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 77 | 76 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  ℝ+ )  →  ( abs ‘ ( ℑ ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 79 | 74 78 | ifclda | ⊢ ( 𝜑  →  if ( 𝐴  ∈  ℝ+ ,  𝐴 ,  ( abs ‘ ( ℑ ‘ 𝐴 ) ) )  ∈  ℝ ) | 
						
							| 80 | 2 79 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ℝ ) | 
						
							| 81 |  | ltmin | ⊢ ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℝ  ∧  𝑆  ∈  ℝ  ∧  𝑇  ∈  ℝ )  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  <  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 )  ↔  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆  ∧  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑇 ) ) ) | 
						
							| 82 | 59 80 72 81 | syl3anc | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  <  if ( 𝑆  ≤  𝑇 ,  𝑆 ,  𝑇 )  ↔  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆  ∧  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑇 ) ) ) | 
						
							| 83 | 7 82 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑆  ∧  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑇 ) ) | 
						
							| 84 | 83 | simprd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  𝑇 ) | 
						
							| 85 | 69 | rpred | ⊢ ( 𝜑  →  ( 1  +  𝑅 )  ∈  ℝ ) | 
						
							| 86 | 66 | ltp1d | ⊢ ( 𝜑  →  𝑅  <  ( 𝑅  +  1 ) ) | 
						
							| 87 | 66 | recnd | ⊢ ( 𝜑  →  𝑅  ∈  ℂ ) | 
						
							| 88 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 89 |  | addcom | ⊢ ( ( 𝑅  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑅  +  1 )  =  ( 1  +  𝑅 ) ) | 
						
							| 90 | 87 88 89 | sylancl | ⊢ ( 𝜑  →  ( 𝑅  +  1 )  =  ( 1  +  𝑅 ) ) | 
						
							| 91 | 86 90 | breqtrd | ⊢ ( 𝜑  →  𝑅  <  ( 1  +  𝑅 ) ) | 
						
							| 92 | 66 85 91 | ltled | ⊢ ( 𝜑  →  𝑅  ≤  ( 1  +  𝑅 ) ) | 
						
							| 93 | 85 | recnd | ⊢ ( 𝜑  →  ( 1  +  𝑅 )  ∈  ℂ ) | 
						
							| 94 | 93 | mulridd | ⊢ ( 𝜑  →  ( ( 1  +  𝑅 )  ·  1 )  =  ( 1  +  𝑅 ) ) | 
						
							| 95 | 92 94 | breqtrrd | ⊢ ( 𝜑  →  𝑅  ≤  ( ( 1  +  𝑅 )  ·  1 ) ) | 
						
							| 96 | 57 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 97 | 66 96 69 | ledivmuld | ⊢ ( 𝜑  →  ( ( 𝑅  /  ( 1  +  𝑅 ) )  ≤  1  ↔  𝑅  ≤  ( ( 1  +  𝑅 )  ·  1 ) ) ) | 
						
							| 98 | 95 97 | mpbird | ⊢ ( 𝜑  →  ( 𝑅  /  ( 1  +  𝑅 ) )  ≤  1 ) | 
						
							| 99 | 70 96 60 | lemul2d | ⊢ ( 𝜑  →  ( ( 𝑅  /  ( 1  +  𝑅 ) )  ≤  1  ↔  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) )  ≤  ( ( abs ‘ 𝐴 )  ·  1 ) ) ) | 
						
							| 100 | 98 99 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) )  ≤  ( ( abs ‘ 𝐴 )  ·  1 ) ) | 
						
							| 101 | 65 | recnd | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 102 | 101 | mulridd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  1 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 103 | 100 102 | breqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) )  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 104 | 3 103 | eqbrtrid | ⊢ ( 𝜑  →  𝑇  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 105 | 59 72 65 84 104 | ltletrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( abs ‘ 𝐴 ) ) | 
						
							| 106 | 105 102 | breqtrrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( abs ‘ 𝐴 )  ·  1 ) ) | 
						
							| 107 | 59 96 60 | ltdivmuld | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  1  ↔  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( abs ‘ 𝐴 )  ·  1 ) ) ) | 
						
							| 108 | 106 107 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  1 ) | 
						
							| 109 |  | posdif | ⊢ ( ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  1  ↔  0  <  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 110 | 61 57 109 | sylancl | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  1  ↔  0  <  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) ) | 
						
							| 111 | 108 110 | mpbid | ⊢ ( 𝜑  →  0  <  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 112 | 58 10 12 | divcld | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  /  𝐴 )  ∈  ℂ ) | 
						
							| 113 | 112 | releabsd | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) )  ≤  ( abs ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) ) ) | 
						
							| 114 | 10 18 10 12 | divsubdird | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  /  𝐴 )  =  ( ( 𝐴  /  𝐴 )  −  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 115 | 10 12 | dividd | ⊢ ( 𝜑  →  ( 𝐴  /  𝐴 )  =  1 ) | 
						
							| 116 | 115 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐴 )  −  ( 𝐵  /  𝐴 ) )  =  ( 1  −  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 117 | 114 116 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  /  𝐴 )  =  ( 1  −  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 118 | 117 | fveq2d | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) )  =  ( ℜ ‘ ( 1  −  ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 119 |  | resub | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐵  /  𝐴 )  ∈  ℂ )  →  ( ℜ ‘ ( 1  −  ( 𝐵  /  𝐴 ) ) )  =  ( ( ℜ ‘ 1 )  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 120 | 88 34 119 | sylancr | ⊢ ( 𝜑  →  ( ℜ ‘ ( 1  −  ( 𝐵  /  𝐴 ) ) )  =  ( ( ℜ ‘ 1 )  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 121 | 118 120 | eqtrd | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) )  =  ( ( ℜ ‘ 1 )  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 122 |  | re1 | ⊢ ( ℜ ‘ 1 )  =  1 | 
						
							| 123 | 122 | oveq1i | ⊢ ( ( ℜ ‘ 1 )  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  =  ( 1  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 124 | 121 123 | eqtrdi | ⊢ ( 𝜑  →  ( ℜ ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) )  =  ( 1  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 125 | 58 10 12 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐴  −  𝐵 )  /  𝐴 ) )  =  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 126 | 113 124 125 | 3brtr3d | ⊢ ( 𝜑  →  ( 1  −  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ≤  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 127 | 96 64 61 126 | subled | ⊢ ( 𝜑  →  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) )  ≤  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 128 | 56 63 64 111 127 | ltletrd | ⊢ ( 𝜑  →  0  <  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 129 |  | argregt0 | ⊢ ( ( ( 𝐵  /  𝐴 )  ∈  ℂ  ∧  0  <  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  →  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 130 | 34 128 129 | syl2anc | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) ) ) | 
						
							| 131 |  | cosq14gt0 | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  0  <  ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 132 | 130 131 | syl | ⊢ ( 𝜑  →  0  <  ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 133 | 132 | gt0ne0d | ⊢ ( 𝜑  →  ( cos ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ≠  0 ) | 
						
							| 134 | 53 133 | retancld | ⊢ ( 𝜑  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 135 | 134 | recnd | ⊢ ( 𝜑  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 136 | 135 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) )  ∈  ℝ ) | 
						
							| 137 |  | tanabsge | ⊢ ( ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ( - ( π  /  2 ) (,) ( π  /  2 ) )  →  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ≤  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) ) | 
						
							| 138 | 130 137 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  ≤  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) ) ) | 
						
							| 139 | 128 | gt0ne0d | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ≠  0 ) | 
						
							| 140 |  | tanarg | ⊢ ( ( ( 𝐵  /  𝐴 )  ∈  ℂ  ∧  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ≠  0 )  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 141 | 34 139 140 | syl2anc | ⊢ ( 𝜑  →  ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 142 | 141 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) )  =  ( abs ‘ ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 143 | 34 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  ∈  ℝ ) | 
						
							| 144 | 143 | recnd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  ∈  ℂ ) | 
						
							| 145 | 64 | recnd | ⊢ ( 𝜑  →  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ∈  ℂ ) | 
						
							| 146 | 144 145 139 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) )  =  ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( abs ‘ ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 147 | 56 64 128 | ltled | ⊢ ( 𝜑  →  0  ≤  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 148 | 64 147 | absidd | ⊢ ( 𝜑  →  ( abs ‘ ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  =  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 149 | 148 | oveq2d | ⊢ ( 𝜑  →  ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( abs ‘ ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) )  =  ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 150 | 142 146 149 | 3eqtrd | ⊢ ( 𝜑  →  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) )  =  ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 151 | 144 | abscld | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 152 | 64 66 | remulcld | ⊢ ( 𝜑  →  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 )  ∈  ℝ ) | 
						
							| 153 | 18 10 | subcld | ⊢ ( 𝜑  →  ( 𝐵  −  𝐴 )  ∈  ℂ ) | 
						
							| 154 | 153 10 12 | divcld | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  𝐴 )  ∈  ℂ ) | 
						
							| 155 |  | absimle | ⊢ ( ( ( 𝐵  −  𝐴 )  /  𝐴 )  ∈  ℂ  →  ( abs ‘ ( ℑ ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) )  ≤  ( abs ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) ) | 
						
							| 156 | 154 155 | syl | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) )  ≤  ( abs ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) ) | 
						
							| 157 | 18 10 10 12 | divsubdird | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  𝐴 )  =  ( ( 𝐵  /  𝐴 )  −  ( 𝐴  /  𝐴 ) ) ) | 
						
							| 158 | 115 | oveq2d | ⊢ ( 𝜑  →  ( ( 𝐵  /  𝐴 )  −  ( 𝐴  /  𝐴 ) )  =  ( ( 𝐵  /  𝐴 )  −  1 ) ) | 
						
							| 159 | 157 158 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝐵  −  𝐴 )  /  𝐴 )  =  ( ( 𝐵  /  𝐴 )  −  1 ) ) | 
						
							| 160 | 159 | fveq2d | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) )  =  ( ℑ ‘ ( ( 𝐵  /  𝐴 )  −  1 ) ) ) | 
						
							| 161 |  | imsub | ⊢ ( ( ( 𝐵  /  𝐴 )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ℑ ‘ ( ( 𝐵  /  𝐴 )  −  1 ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  ( ℑ ‘ 1 ) ) ) | 
						
							| 162 | 34 88 161 | sylancl | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( 𝐵  /  𝐴 )  −  1 ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  ( ℑ ‘ 1 ) ) ) | 
						
							| 163 |  | im1 | ⊢ ( ℑ ‘ 1 )  =  0 | 
						
							| 164 | 163 | oveq2i | ⊢ ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  ( ℑ ‘ 1 ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  0 ) | 
						
							| 165 | 162 164 | eqtrdi | ⊢ ( 𝜑  →  ( ℑ ‘ ( ( 𝐵  /  𝐴 )  −  1 ) )  =  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  0 ) ) | 
						
							| 166 | 144 | subid1d | ⊢ ( 𝜑  →  ( ( ℑ ‘ ( 𝐵  /  𝐴 ) )  −  0 )  =  ( ℑ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 167 | 160 165 166 | 3eqtrrd | ⊢ ( 𝜑  →  ( ℑ ‘ ( 𝐵  /  𝐴 ) )  =  ( ℑ ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) ) | 
						
							| 168 | 167 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  =  ( abs ‘ ( ℑ ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) ) ) | 
						
							| 169 | 10 18 | abssubd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  =  ( abs ‘ ( 𝐵  −  𝐴 ) ) ) | 
						
							| 170 | 169 | oveq1d | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  =  ( ( abs ‘ ( 𝐵  −  𝐴 ) )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 171 | 153 10 12 | absdivd | ⊢ ( 𝜑  →  ( abs ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) )  =  ( ( abs ‘ ( 𝐵  −  𝐴 ) )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 172 | 170 171 | eqtr4d | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  =  ( abs ‘ ( ( 𝐵  −  𝐴 )  /  𝐴 ) ) ) | 
						
							| 173 | 156 168 172 | 3brtr4d | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  ≤  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 174 | 65 59 | resubcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ∈  ℝ ) | 
						
							| 175 | 174 66 | remulcld | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 )  ∈  ℝ ) | 
						
							| 176 | 65 152 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) )  ∈  ℝ ) | 
						
							| 177 | 59 | recnd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  ∈  ℂ ) | 
						
							| 178 | 88 | a1i | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 179 | 177 178 87 | adddid | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  ( 1  +  𝑅 ) )  =  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  1 )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) | 
						
							| 180 | 177 | mulridd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  1 )  =  ( abs ‘ ( 𝐴  −  𝐵 ) ) ) | 
						
							| 181 | 180 | oveq1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  1 )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) )  =  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) | 
						
							| 182 | 179 181 | eqtrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  ( 1  +  𝑅 ) )  =  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) | 
						
							| 183 | 69 | rpne0d | ⊢ ( 𝜑  →  ( 1  +  𝑅 )  ≠  0 ) | 
						
							| 184 | 101 87 93 183 | divassd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  /  ( 1  +  𝑅 ) )  =  ( ( abs ‘ 𝐴 )  ·  ( 𝑅  /  ( 1  +  𝑅 ) ) ) ) | 
						
							| 185 | 184 3 | eqtr4di | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  /  ( 1  +  𝑅 ) )  =  𝑇 ) | 
						
							| 186 | 84 185 | breqtrrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  /  ( 1  +  𝑅 ) ) ) | 
						
							| 187 | 65 66 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  𝑅 )  ∈  ℝ ) | 
						
							| 188 | 59 187 69 | ltmuldivd | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  ( 1  +  𝑅 ) )  <  ( ( abs ‘ 𝐴 )  ·  𝑅 )  ↔  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  /  ( 1  +  𝑅 ) ) ) ) | 
						
							| 189 | 186 188 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  ( 1  +  𝑅 ) )  <  ( ( abs ‘ 𝐴 )  ·  𝑅 ) ) | 
						
							| 190 | 182 189 | eqbrtrrd | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) )  <  ( ( abs ‘ 𝐴 )  ·  𝑅 ) ) | 
						
							| 191 | 59 66 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 )  ∈  ℝ ) | 
						
							| 192 | 59 191 187 | ltaddsubd | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  +  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) )  <  ( ( abs ‘ 𝐴 )  ·  𝑅 )  ↔  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) ) | 
						
							| 193 | 190 192 | mpbid | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) | 
						
							| 194 | 101 177 87 | subdird | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 )  =  ( ( ( abs ‘ 𝐴 )  ·  𝑅 )  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  ·  𝑅 ) ) ) | 
						
							| 195 | 193 194 | breqtrrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 ) ) | 
						
							| 196 | 60 | rpne0d | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 197 | 101 177 101 196 | divsubdird | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  /  ( abs ‘ 𝐴 ) )  =  ( ( ( abs ‘ 𝐴 )  /  ( abs ‘ 𝐴 ) )  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 198 | 101 196 | dividd | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  /  ( abs ‘ 𝐴 ) )  =  1 ) | 
						
							| 199 | 198 | oveq1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  /  ( abs ‘ 𝐴 ) )  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) )  =  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 200 | 197 199 | eqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  /  ( abs ‘ 𝐴 ) )  =  ( 1  −  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 201 | 200 127 | eqbrtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  /  ( abs ‘ 𝐴 ) )  ≤  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) | 
						
							| 202 | 174 64 60 | ledivmuld | ⊢ ( 𝜑  →  ( ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  /  ( abs ‘ 𝐴 ) )  ≤  ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ↔  ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) ) | 
						
							| 203 | 201 202 | mpbid | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) ) | 
						
							| 204 | 65 64 | remulcld | ⊢ ( 𝜑  →  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 205 | 174 204 5 | lemul1d | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ≤  ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ↔  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 )  ≤  ( ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ·  𝑅 ) ) ) | 
						
							| 206 | 203 205 | mpbid | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 )  ≤  ( ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ·  𝑅 ) ) | 
						
							| 207 | 101 145 87 | mulassd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  ·  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  ·  𝑅 )  =  ( ( abs ‘ 𝐴 )  ·  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) | 
						
							| 208 | 206 207 | breqtrd | ⊢ ( 𝜑  →  ( ( ( abs ‘ 𝐴 )  −  ( abs ‘ ( 𝐴  −  𝐵 ) ) )  ·  𝑅 )  ≤  ( ( abs ‘ 𝐴 )  ·  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) | 
						
							| 209 | 59 175 176 195 208 | ltletrd | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( abs ‘ 𝐴 )  ·  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) | 
						
							| 210 | 59 152 60 | ltdivmuld | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 )  ↔  ( abs ‘ ( 𝐴  −  𝐵 ) )  <  ( ( abs ‘ 𝐴 )  ·  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) ) | 
						
							| 211 | 209 210 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ ( 𝐴  −  𝐵 ) )  /  ( abs ‘ 𝐴 ) )  <  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) | 
						
							| 212 | 151 61 152 173 211 | lelttrd | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  <  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) | 
						
							| 213 |  | ltdivmul | ⊢ ( ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  ∈  ℝ  ∧  𝑅  ∈  ℝ  ∧  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ∈  ℝ  ∧  0  <  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) ) )  →  ( ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  <  𝑅  ↔  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  <  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) | 
						
							| 214 | 151 66 64 128 213 | syl112anc | ⊢ ( 𝜑  →  ( ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  <  𝑅  ↔  ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  <  ( ( ℜ ‘ ( 𝐵  /  𝐴 ) )  ·  𝑅 ) ) ) | 
						
							| 215 | 212 214 | mpbird | ⊢ ( 𝜑  →  ( ( abs ‘ ( ℑ ‘ ( 𝐵  /  𝐴 ) ) )  /  ( ℜ ‘ ( 𝐵  /  𝐴 ) ) )  <  𝑅 ) | 
						
							| 216 | 150 215 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( tan ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) ) )  <  𝑅 ) | 
						
							| 217 | 55 136 66 138 216 | lelttrd | ⊢ ( 𝜑  →  ( abs ‘ ( ℑ ‘ ( log ‘ ( 𝐵  /  𝐴 ) ) ) )  <  𝑅 ) | 
						
							| 218 | 51 217 | eqbrtrd | ⊢ ( 𝜑  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝐴 ) )  −  ( ℑ ‘ ( log ‘ 𝐵 ) ) ) )  <  𝑅 ) |