| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | difss | ⊢ ( ℂ  ∖  ( -∞ (,] 0 ) )  ⊆  ℂ | 
						
							| 3 | 1 2 | eqsstri | ⊢ 𝐷  ⊆  ℂ | 
						
							| 4 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 5 |  | eqid | ⊢ ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) | 
						
							| 6 | 1 | ellogdm | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ+ ) ) ) | 
						
							| 7 | 6 | simplbi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ℂ ) | 
						
							| 8 | 1 | logdmn0 | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ≠  0 ) | 
						
							| 9 | 7 8 | logcld | ⊢ ( 𝑥  ∈  𝐷  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 10 | 9 | imcld | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 11 | 5 10 | fmpti | ⊢ ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) : 𝐷 ⟶ ℝ | 
						
							| 12 |  | eqid | ⊢ if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  =  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) )  =  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧  ∈  ℝ+ )  →  𝑦  ∈  𝐷 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧  ∈  ℝ+ )  →  𝑧  ∈  ℝ+ ) | 
						
							| 16 | 1 12 13 14 15 | logcnlem2 | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧  ∈  ℝ+ )  →  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) )  ∈  ℝ+ ) | 
						
							| 17 |  | simpll | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  ( 𝑧  ∈  ℝ+  ∧  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  ( 𝑧  ∈  ℝ+  ∧  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) )  →  𝑧  ∈  ℝ+ ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  ( 𝑧  ∈  ℝ+  ∧  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) )  →  𝑤  ∈  𝐷 ) | 
						
							| 20 |  | simprr | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  ( 𝑧  ∈  ℝ+  ∧  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) )  →  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) | 
						
							| 21 | 1 12 13 17 18 19 20 | logcnlem4 | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  ( 𝑧  ∈  ℝ+  ∧  ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ) ) )  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) )  −  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) )  <  𝑧 ) | 
						
							| 22 | 21 | expr | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) )  →  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) )  −  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) )  <  𝑧 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑦  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  =  ( ℑ ‘ ( log ‘ 𝑦 ) ) ) | 
						
							| 24 |  | fvex | ⊢ ( ℑ ‘ ( log ‘ 𝑦 ) )  ∈  V | 
						
							| 25 | 23 5 24 | fvmpt | ⊢ ( 𝑦  ∈  𝐷  →  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  ( ℑ ‘ ( log ‘ 𝑦 ) ) ) | 
						
							| 26 | 25 | ad2antrr | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  =  ( ℑ ‘ ( log ‘ 𝑦 ) ) ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑤  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  =  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) | 
						
							| 28 |  | fvex | ⊢ ( ℑ ‘ ( log ‘ 𝑤 ) )  ∈  V | 
						
							| 29 | 27 5 28 | fvmpt | ⊢ ( 𝑤  ∈  𝐷  →  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 )  =  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) | 
						
							| 30 | 29 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 )  =  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) | 
						
							| 31 | 26 30 | oveq12d | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  −  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) )  =  ( ( ℑ ‘ ( log ‘ 𝑦 ) )  −  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( abs ‘ ( ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  −  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) )  =  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) )  −  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) ) ) | 
						
							| 33 | 32 | breq1d | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( abs ‘ ( ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  −  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) )  <  𝑧  ↔  ( abs ‘ ( ( ℑ ‘ ( log ‘ 𝑦 ) )  −  ( ℑ ‘ ( log ‘ 𝑤 ) ) ) )  <  𝑧 ) ) | 
						
							| 34 | 22 33 | sylibrd | ⊢ ( ( ( 𝑦  ∈  𝐷  ∧  𝑤  ∈  𝐷 )  ∧  𝑧  ∈  ℝ+ )  →  ( ( abs ‘ ( 𝑦  −  𝑤 ) )  <  if ( if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) )  ≤  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) ,  if ( 𝑦  ∈  ℝ+ ,  𝑦 ,  ( abs ‘ ( ℑ ‘ 𝑦 ) ) ) ,  ( ( abs ‘ 𝑦 )  ·  ( 𝑧  /  ( 1  +  𝑧 ) ) ) )  →  ( abs ‘ ( ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑦 )  −  ( ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) ‘ 𝑤 ) ) )  <  𝑧 ) ) | 
						
							| 35 | 11 16 34 | elcncf1ii | ⊢ ( ( 𝐷  ⊆  ℂ  ∧  ℝ  ⊆  ℂ )  →  ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) )  ∈  ( 𝐷 –cn→ ℝ ) ) | 
						
							| 36 | 3 4 35 | mp2an | ⊢ ( 𝑥  ∈  𝐷  ↦  ( ℑ ‘ ( log ‘ 𝑥 ) ) )  ∈  ( 𝐷 –cn→ ℝ ) |