Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
3 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐴 ≠ 0 ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
7 |
|
cxpef |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
8 |
2 4 6 7
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
10 |
|
id |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ ) |
11 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
12 |
|
remulcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ ( log ‘ 𝐴 ) ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
13 |
10 11 12
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
14 |
13
|
relogefd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
15 |
9 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |