| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 2 |
|
1cnd |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
| 3 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
| 4 |
1 2 1 3
|
divdird |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) ) |
| 5 |
1 3
|
dividd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 / 𝐴 ) = 1 ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 7 |
4 6
|
eqtr2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) |
| 9 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 10 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 11 |
9 10
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 12 |
|
relogdiv |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 13 |
11 12
|
mpancom |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 14 |
8 13
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 15 |
|
rpreccl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ ) |
| 16 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝐴 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ ) |
| 17 |
9 15 16
|
sylancr |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ ) |
| 18 |
17
|
reeflogd |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) = ( 1 + ( 1 / 𝐴 ) ) ) |
| 19 |
17
|
rpred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 20 |
15
|
rpred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ ) |
| 21 |
20
|
reefcld |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ ) |
| 22 |
|
efgt1p |
⊢ ( ( 1 / 𝐴 ) ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 23 |
15 22
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 24 |
19 21 23
|
ltled |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 25 |
18 24
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) |
| 26 |
|
relogcl |
⊢ ( ( 𝐴 + 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 27 |
11 26
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 28 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 29 |
27 28
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 30 |
14 29
|
eqeltrd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ ) |
| 31 |
|
efle |
⊢ ( ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) ) |
| 32 |
30 20 31
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) ) |
| 33 |
25 32
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ) |
| 34 |
14 33
|
eqbrtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) ) |