Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
rpge0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) |
3 |
1 2
|
ge0p1rpd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ ) |
4 |
3
|
rprecred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ∈ ℝ ) |
5 |
|
1red |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) |
6 |
|
0le1 |
⊢ 0 ≤ 1 |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 1 ) |
8 |
5 3 7
|
divge0d |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ ( 1 / ( 𝐴 + 1 ) ) ) |
9 |
|
id |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) |
10 |
5 9
|
ltaddrp2d |
⊢ ( 𝐴 ∈ ℝ+ → 1 < ( 𝐴 + 1 ) ) |
11 |
1 5
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℂ ) |
13 |
12
|
mulid1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) · 1 ) = ( 𝐴 + 1 ) ) |
14 |
10 13
|
breqtrrd |
⊢ ( 𝐴 ∈ ℝ+ → 1 < ( ( 𝐴 + 1 ) · 1 ) ) |
15 |
5 5 3
|
ltdivmuld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 / ( 𝐴 + 1 ) ) < 1 ↔ 1 < ( ( 𝐴 + 1 ) · 1 ) ) ) |
16 |
14 15
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) < 1 ) |
17 |
4 8 16
|
eflegeo |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) ) |
18 |
5
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
19 |
3
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ≠ 0 ) |
20 |
12 18 12 19
|
divsubdird |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) ) |
21 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
22 |
21 18
|
pncand |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
23 |
22
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
24 |
12 19
|
dividd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) = 1 ) |
25 |
24
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) = ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) |
26 |
20 23 25
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) ) |
28 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
29 |
21 12 28 19
|
recdivd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
30 |
27 29
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
31 |
17 30
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ) |
32 |
4
|
rpefcld |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ∈ ℝ+ ) |
33 |
3 9
|
rpdivcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) ∈ ℝ+ ) |
34 |
32 33
|
logled |
⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ↔ ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) ) |
35 |
31 34
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) |
36 |
4
|
relogefd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 + 1 ) ) ) |
37 |
3 9
|
relogdivd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
38 |
35 36 37
|
3brtr3d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ≤ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |