| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rpge0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  𝐴 ) | 
						
							| 3 | 1 2 | ge0p1rpd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  +  1 )  ∈  ℝ+ ) | 
						
							| 4 | 3 | rprecred | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 5 |  | 1red | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℝ ) | 
						
							| 6 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 7 | 6 | a1i | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  1 ) | 
						
							| 8 | 5 3 7 | divge0d | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  ( 1  /  ( 𝐴  +  1 ) ) ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ+ ) | 
						
							| 10 | 5 9 | ltaddrp2d | ⊢ ( 𝐴  ∈  ℝ+  →  1  <  ( 𝐴  +  1 ) ) | 
						
							| 11 | 1 5 | readdcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 13 | 12 | mulridd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 𝐴  +  1 )  ·  1 )  =  ( 𝐴  +  1 ) ) | 
						
							| 14 | 10 13 | breqtrrd | ⊢ ( 𝐴  ∈  ℝ+  →  1  <  ( ( 𝐴  +  1 )  ·  1 ) ) | 
						
							| 15 | 5 5 3 | ltdivmuld | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 1  /  ( 𝐴  +  1 ) )  <  1  ↔  1  <  ( ( 𝐴  +  1 )  ·  1 ) ) ) | 
						
							| 16 | 14 15 | mpbird | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 𝐴  +  1 ) )  <  1 ) | 
						
							| 17 | 4 8 16 | eflegeo | ⊢ ( 𝐴  ∈  ℝ+  →  ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) )  ≤  ( 1  /  ( 1  −  ( 1  /  ( 𝐴  +  1 ) ) ) ) ) | 
						
							| 18 | 5 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  1  ∈  ℂ ) | 
						
							| 19 | 3 | rpne0d | ⊢ ( 𝐴  ∈  ℝ+  →  ( 𝐴  +  1 )  ≠  0 ) | 
						
							| 20 | 12 18 12 19 | divsubdird | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( 𝐴  +  1 )  −  1 )  /  ( 𝐴  +  1 ) )  =  ( ( ( 𝐴  +  1 )  /  ( 𝐴  +  1 ) )  −  ( 1  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 21 | 1 | recnd | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 22 | 21 18 | pncand | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 𝐴  +  1 )  −  1 )  =  𝐴 ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( 𝐴  +  1 )  −  1 )  /  ( 𝐴  +  1 ) )  =  ( 𝐴  /  ( 𝐴  +  1 ) ) ) | 
						
							| 24 | 12 19 | dividd | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 𝐴  +  1 )  /  ( 𝐴  +  1 ) )  =  1 ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( ( 𝐴  +  1 )  /  ( 𝐴  +  1 ) )  −  ( 1  /  ( 𝐴  +  1 ) ) )  =  ( 1  −  ( 1  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 26 | 20 23 25 | 3eqtr3rd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  −  ( 1  /  ( 𝐴  +  1 ) ) )  =  ( 𝐴  /  ( 𝐴  +  1 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 1  −  ( 1  /  ( 𝐴  +  1 ) ) ) )  =  ( 1  /  ( 𝐴  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 28 |  | rpne0 | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ≠  0 ) | 
						
							| 29 | 21 12 28 19 | recdivd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 𝐴  /  ( 𝐴  +  1 ) ) )  =  ( ( 𝐴  +  1 )  /  𝐴 ) ) | 
						
							| 30 | 27 29 | eqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 1  −  ( 1  /  ( 𝐴  +  1 ) ) ) )  =  ( ( 𝐴  +  1 )  /  𝐴 ) ) | 
						
							| 31 | 17 30 | breqtrd | ⊢ ( 𝐴  ∈  ℝ+  →  ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) )  ≤  ( ( 𝐴  +  1 )  /  𝐴 ) ) | 
						
							| 32 | 4 | rpefcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) )  ∈  ℝ+ ) | 
						
							| 33 | 3 9 | rpdivcld | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( 𝐴  +  1 )  /  𝐴 )  ∈  ℝ+ ) | 
						
							| 34 | 32 33 | logled | ⊢ ( 𝐴  ∈  ℝ+  →  ( ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) )  ≤  ( ( 𝐴  +  1 )  /  𝐴 )  ↔  ( log ‘ ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) ) )  ≤  ( log ‘ ( ( 𝐴  +  1 )  /  𝐴 ) ) ) ) | 
						
							| 35 | 31 34 | mpbid | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) ) )  ≤  ( log ‘ ( ( 𝐴  +  1 )  /  𝐴 ) ) ) | 
						
							| 36 | 4 | relogefd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( exp ‘ ( 1  /  ( 𝐴  +  1 ) ) ) )  =  ( 1  /  ( 𝐴  +  1 ) ) ) | 
						
							| 37 | 3 9 | relogdivd | ⊢ ( 𝐴  ∈  ℝ+  →  ( log ‘ ( ( 𝐴  +  1 )  /  𝐴 ) )  =  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ 𝐴 ) ) ) | 
						
							| 38 | 35 36 37 | 3brtr3d | ⊢ ( 𝐴  ∈  ℝ+  →  ( 1  /  ( 𝐴  +  1 ) )  ≤  ( ( log ‘ ( 𝐴  +  1 ) )  −  ( log ‘ 𝐴 ) ) ) |