Step |
Hyp |
Ref |
Expression |
1 |
|
logdivlti |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐴 < 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
2 |
1
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴 ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
3 |
2
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ e ≤ 𝐴 ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
4 |
3
|
an32s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
5 |
4
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( log ‘ 𝐴 ) = ( log ‘ 𝐵 ) ) |
7 |
|
id |
⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) |
8 |
6 7
|
oveq12d |
⊢ ( 𝐴 = 𝐵 → ( ( log ‘ 𝐴 ) / 𝐴 ) = ( ( log ‘ 𝐵 ) / 𝐵 ) ) |
9 |
8
|
eqcomd |
⊢ ( 𝐴 = 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ) |
10 |
9
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 = 𝐵 → ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |
11 |
|
logdivlti |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ 𝐵 < 𝐴 ) → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) |
12 |
11
|
ex |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵 ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
13 |
12
|
3expa |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ e ≤ 𝐵 ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
14 |
13
|
an32s |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
15 |
14
|
adantrr |
⊢ ( ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
16 |
15
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐵 < 𝐴 → ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) |
17 |
10 16
|
orim12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) |
18 |
17
|
con3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
20 |
|
epos |
⊢ 0 < e |
21 |
|
0re |
⊢ 0 ∈ ℝ |
22 |
|
ere |
⊢ e ∈ ℝ |
23 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 < e ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) ) |
24 |
21 22 23
|
mp3an12 |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 < e ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) ) |
25 |
20 24
|
mpani |
⊢ ( 𝐵 ∈ ℝ → ( e ≤ 𝐵 → 0 < 𝐵 ) ) |
26 |
25
|
imp |
⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 0 < 𝐵 ) |
27 |
19 26
|
elrpd |
⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → 𝐵 ∈ ℝ+ ) |
28 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
29 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝐵 ) ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
30 |
28 29
|
mpancom |
⊢ ( 𝐵 ∈ ℝ+ → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
31 |
27 30
|
syl |
⊢ ( ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) → ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ) |
32 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
33 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) |
34 |
21 22 33
|
mp3an12 |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 < e ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) ) |
35 |
20 34
|
mpani |
⊢ ( 𝐴 ∈ ℝ → ( e ≤ 𝐴 → 0 < 𝐴 ) ) |
36 |
35
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 0 < 𝐴 ) |
37 |
32 36
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
38 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
39 |
|
rerpdivcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
40 |
38 39
|
mpancom |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
41 |
37 40
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) → ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) |
42 |
|
axlttri |
⊢ ( ( ( ( log ‘ 𝐵 ) / 𝐵 ) ∈ ℝ ∧ ( ( log ‘ 𝐴 ) / 𝐴 ) ∈ ℝ ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) |
43 |
31 41 42
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ↔ ¬ ( ( ( log ‘ 𝐵 ) / 𝐵 ) = ( ( log ‘ 𝐴 ) / 𝐴 ) ∨ ( ( log ‘ 𝐴 ) / 𝐴 ) < ( ( log ‘ 𝐵 ) / 𝐵 ) ) ) ) |
44 |
|
axlttri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
45 |
44
|
ad2ant2r |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
46 |
18 43 45
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) → 𝐴 < 𝐵 ) ) |
47 |
5 46
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ e ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ e ≤ 𝐵 ) ) → ( 𝐴 < 𝐵 ↔ ( ( log ‘ 𝐵 ) / 𝐵 ) < ( ( log ‘ 𝐴 ) / 𝐴 ) ) ) |