Step |
Hyp |
Ref |
Expression |
1 |
|
logcn.d |
⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) |
2 |
|
eldifn |
⊢ ( 𝐴 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) |
3 |
2 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝐷 → ¬ 𝐴 ∈ ( -∞ (,] 0 ) ) |
4 |
|
rpre |
⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
5 |
1
|
ellogdm |
⊢ ( 𝐴 ∈ 𝐷 ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ+ ) ) ) |
6 |
5
|
simplbi |
⊢ ( 𝐴 ∈ 𝐷 → 𝐴 ∈ ℂ ) |
7 |
|
negreb |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ 𝐷 → ( - 𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ ) ) |
9 |
4 8
|
syl5ib |
⊢ ( 𝐴 ∈ 𝐷 → ( - 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
11 |
10
|
mnfltd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → -∞ < 𝐴 ) |
12 |
|
rpgt0 |
⊢ ( - 𝐴 ∈ ℝ+ → 0 < - 𝐴 ) |
13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 0 < - 𝐴 ) |
14 |
10
|
lt0neg1d |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → ( 𝐴 < 0 ↔ 0 < - 𝐴 ) ) |
15 |
13 14
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 < 0 ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) |
18 |
10 16 17
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) |
19 |
15 18
|
mpd |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ≤ 0 ) |
20 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
21 |
|
elioc2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) ) |
22 |
20 16 21
|
mp2an |
⊢ ( 𝐴 ∈ ( -∞ (,] 0 ) ↔ ( 𝐴 ∈ ℝ ∧ -∞ < 𝐴 ∧ 𝐴 ≤ 0 ) ) |
23 |
10 11 19 22
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ( -∞ (,] 0 ) ) |
24 |
3 23
|
mtand |
⊢ ( 𝐴 ∈ 𝐷 → ¬ - 𝐴 ∈ ℝ+ ) |