Metamath Proof Explorer


Theorem logdmss

Description: The continuity domain of log is a subset of the regular domain of log . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypothesis logcn.d 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) )
Assertion logdmss 𝐷 ⊆ ( ℂ ∖ { 0 } )

Proof

Step Hyp Ref Expression
1 logcn.d 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) )
2 1 ellogdm ( 𝑥𝐷 ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ+ ) ) )
3 2 simplbi ( 𝑥𝐷𝑥 ∈ ℂ )
4 1 logdmn0 ( 𝑥𝐷𝑥 ≠ 0 )
5 eldifsn ( 𝑥 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) )
6 3 4 5 sylanbrc ( 𝑥𝐷𝑥 ∈ ( ℂ ∖ { 0 } ) )
7 6 ssriv 𝐷 ⊆ ( ℂ ∖ { 0 } )