Metamath Proof Explorer
Description: The natural logarithm of _e . One case of Property 1b of Cohen
p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)
|
|
Ref |
Expression |
|
Assertion |
loge |
⊢ ( log ‘ e ) = 1 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-e |
⊢ e = ( exp ‘ 1 ) |
2 |
1
|
eqcomi |
⊢ ( exp ‘ 1 ) = e |
3 |
|
epr |
⊢ e ∈ ℝ+ |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
relogeftb |
⊢ ( ( e ∈ ℝ+ ∧ 1 ∈ ℝ ) → ( ( log ‘ e ) = 1 ↔ ( exp ‘ 1 ) = e ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( ( log ‘ e ) = 1 ↔ ( exp ‘ 1 ) = e ) |
7 |
2 6
|
mpbir |
⊢ ( log ‘ e ) = 1 |