Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
2 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
3 |
2
|
fveq1i |
⊢ ( log ‘ 𝐴 ) = ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) |
4 |
3
|
eqeq1i |
⊢ ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) |
5 |
|
fvres |
⊢ ( 𝐵 ∈ ran log → ( ( exp ↾ ran log ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝐵 ∈ ran log → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
8 |
|
eff1o2 |
⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) |
9 |
|
f1ocnvfvb |
⊢ ( ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
10 |
8 9
|
mp3an1 |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( ( exp ↾ ran log ) ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
11 |
7 10
|
bitr3d |
⊢ ( ( 𝐵 ∈ ran log ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
12 |
11
|
ancoms |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( exp ‘ 𝐵 ) = 𝐴 ↔ ( ◡ ( exp ↾ ran log ) ‘ 𝐴 ) = 𝐵 ) ) |
13 |
4 12
|
bitr4id |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
14 |
1 13
|
sylanbr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |
15 |
14
|
3impa |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ran log ) → ( ( log ‘ 𝐴 ) = 𝐵 ↔ ( exp ‘ 𝐵 ) = 𝐴 ) ) |