Description: If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | logeq0im1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → 𝐴 = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eflog | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) | |
2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
3 | fveq2 | ⊢ ( ( log ‘ 𝐴 ) = 0 → ( exp ‘ ( log ‘ 𝐴 ) ) = ( exp ‘ 0 ) ) | |
4 | ef0 | ⊢ ( exp ‘ 0 ) = 1 | |
5 | 3 4 | eqtrdi | ⊢ ( ( log ‘ 𝐴 ) = 0 → ( exp ‘ ( log ‘ 𝐴 ) ) = 1 ) |
6 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 1 ) |
7 | 2 6 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( log ‘ 𝐴 ) = 0 ) → 𝐴 = 1 ) |