| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eff1o2 |
⊢ ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) |
| 2 |
|
f1ocnv |
⊢ ( ( exp ↾ ran log ) : ran log –1-1-onto→ ( ℂ ∖ { 0 } ) → ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) |
| 3 |
1 2
|
ax-mp |
⊢ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |
| 4 |
|
dflog2 |
⊢ log = ◡ ( exp ↾ ran log ) |
| 5 |
|
f1oeq1 |
⊢ ( log = ◡ ( exp ↾ ran log ) → ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ↔ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ↔ ◡ ( exp ↾ ran log ) : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log ) |
| 7 |
3 6
|
mpbir |
⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log |