| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logcn.d | ⊢ 𝐷  =  ( ℂ  ∖  ( -∞ (,] 0 ) ) | 
						
							| 2 |  | logf1o | ⊢ log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log | 
						
							| 3 |  | f1of1 | ⊢ ( log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log  →  log : ( ℂ  ∖  { 0 } ) –1-1→ ran  log ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ log : ( ℂ  ∖  { 0 } ) –1-1→ ran  log | 
						
							| 5 | 1 | logdmss | ⊢ 𝐷  ⊆  ( ℂ  ∖  { 0 } ) | 
						
							| 6 |  | f1ores | ⊢ ( ( log : ( ℂ  ∖  { 0 } ) –1-1→ ran  log  ∧  𝐷  ⊆  ( ℂ  ∖  { 0 } ) )  →  ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( log  “  𝐷 ) ) | 
						
							| 7 | 4 5 6 | mp2an | ⊢ ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( log  “  𝐷 ) | 
						
							| 8 |  | f1ofun | ⊢ ( log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log  →  Fun  log ) | 
						
							| 9 | 2 8 | ax-mp | ⊢ Fun  log | 
						
							| 10 |  | f1of | ⊢ ( log : ( ℂ  ∖  { 0 } ) –1-1-onto→ ran  log  →  log : ( ℂ  ∖  { 0 } ) ⟶ ran  log ) | 
						
							| 11 | 2 10 | ax-mp | ⊢ log : ( ℂ  ∖  { 0 } ) ⟶ ran  log | 
						
							| 12 | 11 | fdmi | ⊢ dom  log  =  ( ℂ  ∖  { 0 } ) | 
						
							| 13 | 5 12 | sseqtrri | ⊢ 𝐷  ⊆  dom  log | 
						
							| 14 |  | funimass4 | ⊢ ( ( Fun  log  ∧  𝐷  ⊆  dom  log )  →  ( ( log  “  𝐷 )  ⊆  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ∀ 𝑥  ∈  𝐷 ( log ‘ 𝑥 )  ∈  ( ◡ ℑ  “  ( - π (,) π ) ) ) ) | 
						
							| 15 | 9 13 14 | mp2an | ⊢ ( ( log  “  𝐷 )  ⊆  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ∀ 𝑥  ∈  𝐷 ( log ‘ 𝑥 )  ∈  ( ◡ ℑ  “  ( - π (,) π ) ) ) | 
						
							| 16 | 1 | ellogdm | ⊢ ( 𝑥  ∈  𝐷  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ+ ) ) ) | 
						
							| 17 | 16 | simplbi | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  ℂ ) | 
						
							| 18 | 1 | logdmn0 | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ≠  0 ) | 
						
							| 19 | 17 18 | logcld | ⊢ ( 𝑥  ∈  𝐷  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 20 | 19 | imcld | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 21 | 17 18 | logimcld | ⊢ ( 𝑥  ∈  𝐷  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑥 ) )  ≤  π ) ) | 
						
							| 22 | 21 | simpld | ⊢ ( 𝑥  ∈  𝐷  →  - π  <  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) | 
						
							| 23 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑥  ∈  𝐷  →  π  ∈  ℝ ) | 
						
							| 25 | 21 | simprd | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  ≤  π ) | 
						
							| 26 | 1 | logdmnrp | ⊢ ( 𝑥  ∈  𝐷  →  ¬  - 𝑥  ∈  ℝ+ ) | 
						
							| 27 |  | lognegb | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( - 𝑥  ∈  ℝ+  ↔  ( ℑ ‘ ( log ‘ 𝑥 ) )  =  π ) ) | 
						
							| 28 | 17 18 27 | syl2anc | ⊢ ( 𝑥  ∈  𝐷  →  ( - 𝑥  ∈  ℝ+  ↔  ( ℑ ‘ ( log ‘ 𝑥 ) )  =  π ) ) | 
						
							| 29 | 28 | necon3bbid | ⊢ ( 𝑥  ∈  𝐷  →  ( ¬  - 𝑥  ∈  ℝ+  ↔  ( ℑ ‘ ( log ‘ 𝑥 ) )  ≠  π ) ) | 
						
							| 30 | 26 29 | mpbid | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  ≠  π ) | 
						
							| 31 | 30 | necomd | ⊢ ( 𝑥  ∈  𝐷  →  π  ≠  ( ℑ ‘ ( log ‘ 𝑥 ) ) ) | 
						
							| 32 | 20 24 25 31 | leneltd | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  <  π ) | 
						
							| 33 | 23 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 34 | 33 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 35 | 23 | rexri | ⊢ π  ∈  ℝ* | 
						
							| 36 |  | elioo2 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ* )  →  ( ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ( - π (,) π )  ↔  ( ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑥 ) )  <  π ) ) ) | 
						
							| 37 | 34 35 36 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ( - π (,) π )  ↔  ( ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑥 ) )  <  π ) ) | 
						
							| 38 | 20 22 32 37 | syl3anbrc | ⊢ ( 𝑥  ∈  𝐷  →  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ( - π (,) π ) ) | 
						
							| 39 |  | imf | ⊢ ℑ : ℂ ⟶ ℝ | 
						
							| 40 |  | ffn | ⊢ ( ℑ : ℂ ⟶ ℝ  →  ℑ  Fn  ℂ ) | 
						
							| 41 |  | elpreima | ⊢ ( ℑ  Fn  ℂ  →  ( ( log ‘ 𝑥 )  ∈  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ( ( log ‘ 𝑥 )  ∈  ℂ  ∧  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ( - π (,) π ) ) ) ) | 
						
							| 42 | 39 40 41 | mp2b | ⊢ ( ( log ‘ 𝑥 )  ∈  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ( ( log ‘ 𝑥 )  ∈  ℂ  ∧  ( ℑ ‘ ( log ‘ 𝑥 ) )  ∈  ( - π (,) π ) ) ) | 
						
							| 43 | 19 38 42 | sylanbrc | ⊢ ( 𝑥  ∈  𝐷  →  ( log ‘ 𝑥 )  ∈  ( ◡ ℑ  “  ( - π (,) π ) ) ) | 
						
							| 44 | 15 43 | mprgbir | ⊢ ( log  “  𝐷 )  ⊆  ( ◡ ℑ  “  ( - π (,) π ) ) | 
						
							| 45 |  | elpreima | ⊢ ( ℑ  Fn  ℂ  →  ( 𝑥  ∈  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) ) ) ) | 
						
							| 46 | 39 40 45 | mp2b | ⊢ ( 𝑥  ∈  ( ◡ ℑ  “  ( - π (,) π ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) ) ) | 
						
							| 47 |  | simpl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  𝑥  ∈  ℂ ) | 
						
							| 48 |  | eliooord | ⊢ ( ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π )  →  ( - π  <  ( ℑ ‘ 𝑥 )  ∧  ( ℑ ‘ 𝑥 )  <  π ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( - π  <  ( ℑ ‘ 𝑥 )  ∧  ( ℑ ‘ 𝑥 )  <  π ) ) | 
						
							| 50 | 49 | simpld | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  - π  <  ( ℑ ‘ 𝑥 ) ) | 
						
							| 51 | 49 | simprd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( ℑ ‘ 𝑥 )  <  π ) | 
						
							| 52 |  | imcl | ⊢ ( 𝑥  ∈  ℂ  →  ( ℑ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( ℑ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 54 |  | ltle | ⊢ ( ( ( ℑ ‘ 𝑥 )  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  <  π  →  ( ℑ ‘ 𝑥 )  ≤  π ) ) | 
						
							| 55 | 53 23 54 | sylancl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( ( ℑ ‘ 𝑥 )  <  π  →  ( ℑ ‘ 𝑥 )  ≤  π ) ) | 
						
							| 56 | 51 55 | mpd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( ℑ ‘ 𝑥 )  ≤  π ) | 
						
							| 57 |  | ellogrn | ⊢ ( 𝑥  ∈  ran  log  ↔  ( 𝑥  ∈  ℂ  ∧  - π  <  ( ℑ ‘ 𝑥 )  ∧  ( ℑ ‘ 𝑥 )  ≤  π ) ) | 
						
							| 58 | 47 50 56 57 | syl3anbrc | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  𝑥  ∈  ran  log ) | 
						
							| 59 |  | logef | ⊢ ( 𝑥  ∈  ran  log  →  ( log ‘ ( exp ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( log ‘ ( exp ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 61 |  | efcl | ⊢ ( 𝑥  ∈  ℂ  →  ( exp ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( exp ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 63 | 53 | adantr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 64 | 63 | recnd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 65 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 66 | 65 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  π  ∈  ℂ ) | 
						
							| 67 |  | pipos | ⊢ 0  <  π | 
						
							| 68 | 23 67 | gt0ne0ii | ⊢ π  ≠  0 | 
						
							| 69 | 68 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  π  ≠  0 ) | 
						
							| 70 | 51 | adantr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ 𝑥 )  <  π ) | 
						
							| 71 | 65 | mulridi | ⊢ ( π  ·  1 )  =  π | 
						
							| 72 | 70 71 | breqtrrdi | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ 𝑥 )  <  ( π  ·  1 ) ) | 
						
							| 73 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 74 | 73 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 75 | 23 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  π  ∈  ℝ ) | 
						
							| 76 | 67 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  0  <  π ) | 
						
							| 77 |  | ltdivmul | ⊢ ( ( ( ℑ ‘ 𝑥 )  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( π  ∈  ℝ  ∧  0  <  π ) )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  <  1  ↔  ( ℑ ‘ 𝑥 )  <  ( π  ·  1 ) ) ) | 
						
							| 78 | 63 74 75 76 77 | syl112anc | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  <  1  ↔  ( ℑ ‘ 𝑥 )  <  ( π  ·  1 ) ) ) | 
						
							| 79 | 72 78 | mpbird | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  <  1 ) | 
						
							| 80 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 81 | 79 80 | breqtrdi | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  <  ( 0  +  1 ) ) | 
						
							| 82 | 63 | recoscld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( cos ‘ ( ℑ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 83 | 63 | resincld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( sin ‘ ( ℑ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 84 | 82 83 | crimd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) )  =  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) | 
						
							| 85 |  | efeul | ⊢ ( 𝑥  ∈  ℂ  →  ( exp ‘ 𝑥 )  =  ( ( exp ‘ ( ℜ ‘ 𝑥 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ 𝑥 )  =  ( ( exp ‘ ( ℜ ‘ 𝑥 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 87 | 86 | oveq1d | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( exp ‘ 𝑥 )  /  ( exp ‘ ( ℜ ‘ 𝑥 ) ) )  =  ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) )  /  ( exp ‘ ( ℜ ‘ 𝑥 ) ) ) ) | 
						
							| 88 | 82 | recnd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( cos ‘ ( ℑ ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 89 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 90 | 83 | recnd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( sin ‘ ( ℑ ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 91 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( sin ‘ ( ℑ ‘ 𝑥 ) )  ∈  ℂ )  →  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 92 | 89 90 91 | sylancr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 93 | 88 92 | addcld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) )  ∈  ℂ ) | 
						
							| 94 |  | recl | ⊢ ( 𝑥  ∈  ℂ  →  ( ℜ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 95 | 94 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℜ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℜ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 97 |  | efcl | ⊢ ( ( ℜ ‘ 𝑥 )  ∈  ℂ  →  ( exp ‘ ( ℜ ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ ( ℜ ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 99 |  | efne0 | ⊢ ( ( ℜ ‘ 𝑥 )  ∈  ℂ  →  ( exp ‘ ( ℜ ‘ 𝑥 ) )  ≠  0 ) | 
						
							| 100 | 96 99 | syl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ ( ℜ ‘ 𝑥 ) )  ≠  0 ) | 
						
							| 101 | 93 98 100 | divcan3d | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( exp ‘ ( ℜ ‘ 𝑥 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) )  /  ( exp ‘ ( ℜ ‘ 𝑥 ) ) )  =  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) | 
						
							| 102 | 87 101 | eqtrd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( exp ‘ 𝑥 )  /  ( exp ‘ ( ℜ ‘ 𝑥 ) ) )  =  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) ) | 
						
							| 103 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 104 | 95 | reefcld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ ( ℜ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 105 | 103 104 100 | redivcld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( exp ‘ 𝑥 )  /  ( exp ‘ ( ℜ ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 106 | 102 105 | eqeltrrd | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) )  ∈  ℝ ) | 
						
							| 107 | 106 | reim0d | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ ( ( cos ‘ ( ℑ ‘ 𝑥 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝑥 ) ) ) ) )  =  0 ) | 
						
							| 108 | 84 107 | eqtr3d | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( sin ‘ ( ℑ ‘ 𝑥 ) )  =  0 ) | 
						
							| 109 |  | sineq0 | ⊢ ( ( ℑ ‘ 𝑥 )  ∈  ℂ  →  ( ( sin ‘ ( ℑ ‘ 𝑥 ) )  =  0  ↔  ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℤ ) ) | 
						
							| 110 | 64 109 | syl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( sin ‘ ( ℑ ‘ 𝑥 ) )  =  0  ↔  ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℤ ) ) | 
						
							| 111 | 108 110 | mpbid | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℤ ) | 
						
							| 112 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 113 |  | zleltp1 | ⊢ ( ( ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  ≤  0  ↔  ( ( ℑ ‘ 𝑥 )  /  π )  <  ( 0  +  1 ) ) ) | 
						
							| 114 | 111 112 113 | sylancl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  ≤  0  ↔  ( ( ℑ ‘ 𝑥 )  /  π )  <  ( 0  +  1 ) ) ) | 
						
							| 115 | 81 114 | mpbird | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  ≤  0 ) | 
						
							| 116 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 117 | 65 | mulm1i | ⊢ ( - 1  ·  π )  =  - π | 
						
							| 118 | 50 | adantr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  - π  <  ( ℑ ‘ 𝑥 ) ) | 
						
							| 119 | 117 118 | eqbrtrid | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( - 1  ·  π )  <  ( ℑ ‘ 𝑥 ) ) | 
						
							| 120 | 73 | renegcli | ⊢ - 1  ∈  ℝ | 
						
							| 121 | 120 | a1i | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  - 1  ∈  ℝ ) | 
						
							| 122 |  | ltmuldiv | ⊢ ( ( - 1  ∈  ℝ  ∧  ( ℑ ‘ 𝑥 )  ∈  ℝ  ∧  ( π  ∈  ℝ  ∧  0  <  π ) )  →  ( ( - 1  ·  π )  <  ( ℑ ‘ 𝑥 )  ↔  - 1  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) | 
						
							| 123 | 121 63 75 76 122 | syl112anc | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( - 1  ·  π )  <  ( ℑ ‘ 𝑥 )  ↔  - 1  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) | 
						
							| 124 | 119 123 | mpbid | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  - 1  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) | 
						
							| 125 | 116 124 | eqbrtrrid | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( 0  −  1 )  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) | 
						
							| 126 |  | zlem1lt | ⊢ ( ( 0  ∈  ℤ  ∧  ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℤ )  →  ( 0  ≤  ( ( ℑ ‘ 𝑥 )  /  π )  ↔  ( 0  −  1 )  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) | 
						
							| 127 | 112 111 126 | sylancr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( 0  ≤  ( ( ℑ ‘ 𝑥 )  /  π )  ↔  ( 0  −  1 )  <  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) | 
						
							| 128 | 125 127 | mpbird | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  0  ≤  ( ( ℑ ‘ 𝑥 )  /  π ) ) | 
						
							| 129 | 63 75 69 | redivcld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℝ ) | 
						
							| 130 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 131 |  | letri3 | ⊢ ( ( ( ( ℑ ‘ 𝑥 )  /  π )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  =  0  ↔  ( ( ( ℑ ‘ 𝑥 )  /  π )  ≤  0  ∧  0  ≤  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) ) | 
						
							| 132 | 129 130 131 | sylancl | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( ℑ ‘ 𝑥 )  /  π )  =  0  ↔  ( ( ( ℑ ‘ 𝑥 )  /  π )  ≤  0  ∧  0  ≤  ( ( ℑ ‘ 𝑥 )  /  π ) ) ) ) | 
						
							| 133 | 115 128 132 | mpbir2and | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ( ℑ ‘ 𝑥 )  /  π )  =  0 ) | 
						
							| 134 | 64 66 69 133 | diveq0d | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( ℑ ‘ 𝑥 )  =  0 ) | 
						
							| 135 |  | reim0b | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥  ∈  ℝ  ↔  ( ℑ ‘ 𝑥 )  =  0 ) ) | 
						
							| 136 | 135 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑥  ∈  ℝ  ↔  ( ℑ ‘ 𝑥 )  =  0 ) ) | 
						
							| 137 | 134 136 | mpbird | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  𝑥  ∈  ℝ ) | 
						
							| 138 | 137 | rpefcld | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  ∧  ( exp ‘ 𝑥 )  ∈  ℝ )  →  ( exp ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 139 | 138 | ex | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( ( exp ‘ 𝑥 )  ∈  ℝ  →  ( exp ‘ 𝑥 )  ∈  ℝ+ ) ) | 
						
							| 140 | 1 | ellogdm | ⊢ ( ( exp ‘ 𝑥 )  ∈  𝐷  ↔  ( ( exp ‘ 𝑥 )  ∈  ℂ  ∧  ( ( exp ‘ 𝑥 )  ∈  ℝ  →  ( exp ‘ 𝑥 )  ∈  ℝ+ ) ) ) | 
						
							| 141 | 62 139 140 | sylanbrc | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( exp ‘ 𝑥 )  ∈  𝐷 ) | 
						
							| 142 |  | funfvima2 | ⊢ ( ( Fun  log  ∧  𝐷  ⊆  dom  log )  →  ( ( exp ‘ 𝑥 )  ∈  𝐷  →  ( log ‘ ( exp ‘ 𝑥 ) )  ∈  ( log  “  𝐷 ) ) ) | 
						
							| 143 | 9 13 142 | mp2an | ⊢ ( ( exp ‘ 𝑥 )  ∈  𝐷  →  ( log ‘ ( exp ‘ 𝑥 ) )  ∈  ( log  “  𝐷 ) ) | 
						
							| 144 | 141 143 | syl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  ( log ‘ ( exp ‘ 𝑥 ) )  ∈  ( log  “  𝐷 ) ) | 
						
							| 145 | 60 144 | eqeltrrd | ⊢ ( ( 𝑥  ∈  ℂ  ∧  ( ℑ ‘ 𝑥 )  ∈  ( - π (,) π ) )  →  𝑥  ∈  ( log  “  𝐷 ) ) | 
						
							| 146 | 46 145 | sylbi | ⊢ ( 𝑥  ∈  ( ◡ ℑ  “  ( - π (,) π ) )  →  𝑥  ∈  ( log  “  𝐷 ) ) | 
						
							| 147 | 146 | ssriv | ⊢ ( ◡ ℑ  “  ( - π (,) π ) )  ⊆  ( log  “  𝐷 ) | 
						
							| 148 | 44 147 | eqssi | ⊢ ( log  “  𝐷 )  =  ( ◡ ℑ  “  ( - π (,) π ) ) | 
						
							| 149 |  | f1oeq3 | ⊢ ( ( log  “  𝐷 )  =  ( ◡ ℑ  “  ( - π (,) π ) )  →  ( ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( log  “  𝐷 )  ↔  ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ  “  ( - π (,) π ) ) ) ) | 
						
							| 150 | 148 149 | ax-mp | ⊢ ( ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( log  “  𝐷 )  ↔  ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ  “  ( - π (,) π ) ) ) | 
						
							| 151 | 7 150 | mpbi | ⊢ ( log  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( ◡ ℑ  “  ( - π (,) π ) ) |