Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
rpmulcl |
⊢ ( ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑘 · 𝑛 ) ∈ ℝ+ ) |
3 |
2
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ) → ( 𝑘 · 𝑛 ) ∈ ℝ+ ) |
4 |
|
fvi |
⊢ ( 𝑘 ∈ V → ( I ‘ 𝑘 ) = 𝑘 ) |
5 |
4
|
elv |
⊢ ( I ‘ 𝑘 ) = 𝑘 |
6 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
7 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
8 |
7
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℝ+ ) |
9 |
5 8
|
eqeltrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( I ‘ 𝑘 ) ∈ ℝ+ ) |
10 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
11 |
10
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
12 |
|
relogmul |
⊢ ( ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( log ‘ ( 𝑘 · 𝑛 ) ) = ( ( log ‘ 𝑘 ) + ( log ‘ 𝑛 ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑘 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) ) → ( log ‘ ( 𝑘 · 𝑛 ) ) = ( ( log ‘ 𝑘 ) + ( log ‘ 𝑛 ) ) ) |
14 |
5
|
fveq2i |
⊢ ( log ‘ ( I ‘ 𝑘 ) ) = ( log ‘ 𝑘 ) |
15 |
14
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( I ‘ 𝑘 ) ) = ( log ‘ 𝑘 ) ) |
16 |
3 9 11 13 15
|
seqhomo |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( seq 1 ( · , I ) ‘ 𝑁 ) ) = ( seq 1 ( + , log ) ‘ 𝑁 ) ) |
17 |
|
facnn |
⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ! ‘ 𝑁 ) ) = ( log ‘ ( seq 1 ( · , I ) ‘ 𝑁 ) ) ) |
19 |
|
eqidd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) = ( log ‘ 𝑘 ) ) |
20 |
|
relogcl |
⊢ ( 𝑘 ∈ ℝ+ → ( log ‘ 𝑘 ) ∈ ℝ ) |
21 |
8 20
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
23 |
19 11 22
|
fsumser |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) = ( seq 1 ( + , log ) ‘ 𝑁 ) ) |
24 |
16 18 23
|
3eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
25 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
26 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) = 0 |
27 |
25 26
|
eqtr4i |
⊢ ( log ‘ 1 ) = Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) |
28 |
|
fveq2 |
⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = ( ! ‘ 0 ) ) |
29 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ! ‘ 𝑁 ) = 1 ) |
31 |
30
|
fveq2d |
⊢ ( 𝑁 = 0 → ( log ‘ ( ! ‘ 𝑁 ) ) = ( log ‘ 1 ) ) |
32 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) |
33 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
34 |
32 33
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
35 |
34
|
sumeq1d |
⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) = Σ 𝑘 ∈ ∅ ( log ‘ 𝑘 ) ) |
36 |
27 31 35
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
37 |
24 36
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |
38 |
1 37
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( log ‘ ( ! ‘ 𝑁 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( log ‘ 𝑘 ) ) |