Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
2 |
1
|
times2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · 2 ) = ( 𝐴 + 𝐴 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · ( log ‘ 𝐴 ) ) − ( 𝐴 · 2 ) ) = ( ( 𝐴 · ( log ‘ 𝐴 ) ) − ( 𝐴 + 𝐴 ) ) ) |
4 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
6 |
|
2cnd |
⊢ ( 𝐴 ∈ ℝ+ → 2 ∈ ℂ ) |
7 |
1 5 6
|
subdid |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( ( log ‘ 𝐴 ) − 2 ) ) = ( ( 𝐴 · ( log ‘ 𝐴 ) ) − ( 𝐴 · 2 ) ) ) |
8 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
9 |
8 4
|
remulcld |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
11 |
10 1 1
|
subsub4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) − 𝐴 ) = ( ( 𝐴 · ( log ‘ 𝐴 ) ) − ( 𝐴 + 𝐴 ) ) ) |
12 |
3 7 11
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( ( log ‘ 𝐴 ) − 2 ) ) = ( ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) − 𝐴 ) ) |
13 |
9 8
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) ∈ ℝ ) |
14 |
|
fzfid |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
15 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
16 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... 𝑛 ) → 𝑑 ∈ ℕ ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) → 𝑑 ∈ ℕ ) |
18 |
17
|
nnrecred |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
19 |
15 18
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ∈ ℝ ) |
20 |
14 19
|
fsumrecl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ∈ ℝ ) |
21 |
|
rprege0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
22 |
|
flge0nn0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
24 |
23
|
faccld |
⊢ ( 𝐴 ∈ ℝ+ → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ ) |
25 |
24
|
nnrpd |
⊢ ( 𝐴 ∈ ℝ+ → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ+ ) |
26 |
25
|
relogcld |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ) |
27 |
26 8
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + 𝐴 ) ∈ ℝ ) |
28 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℕ ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ ) |
30 |
29
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
31 |
14 30
|
fsumrecl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ∈ ℝ ) |
32 |
8 31
|
remulcld |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) ∈ ℝ ) |
33 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
34 |
8 33
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
35 |
32 34
|
resubcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) − ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
36 |
|
harmoniclbnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) |
37 |
|
rpregt0 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
38 |
|
lemul2 |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( log ‘ 𝐴 ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ↔ ( 𝐴 · ( log ‘ 𝐴 ) ) ≤ ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) ) ) |
39 |
4 31 37 38
|
syl3anc |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ↔ ( 𝐴 · ( log ‘ 𝐴 ) ) ≤ ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) ) ) |
40 |
36 39
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( log ‘ 𝐴 ) ) ≤ ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) ) |
41 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
42 |
8 41
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
43 |
9 34 32 8 40 42
|
le2subd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) ≤ ( ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) − ( ⌊ ‘ 𝐴 ) ) ) |
44 |
28
|
nnrecred |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
45 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 𝑑 ) ∈ ℝ ) → ( 𝐴 · ( 1 / 𝑑 ) ) ∈ ℝ ) |
46 |
8 44 45
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 · ( 1 / 𝑑 ) ) ∈ ℝ ) |
47 |
|
peano2rem |
⊢ ( ( 𝐴 · ( 1 / 𝑑 ) ) ∈ ℝ → ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ∈ ℝ ) |
48 |
46 47
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ∈ ℝ ) |
49 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
50 |
30
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
51 |
49 50
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ∈ ℝ ) |
52 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
53 |
52 33
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
54 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
55 |
53 54
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
56 |
29
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℝ ) |
57 |
|
fllep1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
58 |
8 57
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
59 |
58
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ≤ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
60 |
52 55 56 59
|
lesub1dd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 − 𝑑 ) ≤ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) ) |
61 |
52 56
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 − 𝑑 ) ∈ ℝ ) |
62 |
55 56
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) ∈ ℝ ) |
63 |
29
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℝ+ ) |
64 |
63
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑑 ) ∈ ℝ+ ) |
65 |
61 62 64
|
lemul1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 − 𝑑 ) ≤ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) ↔ ( ( 𝐴 − 𝑑 ) · ( 1 / 𝑑 ) ) ≤ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) · ( 1 / 𝑑 ) ) ) ) |
66 |
60 65
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 − 𝑑 ) · ( 1 / 𝑑 ) ) ≤ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) · ( 1 / 𝑑 ) ) ) |
67 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℂ ) |
68 |
29
|
nncnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℂ ) |
69 |
30
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑑 ) ∈ ℂ ) |
70 |
67 68 69
|
subdird |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 − 𝑑 ) · ( 1 / 𝑑 ) ) = ( ( 𝐴 · ( 1 / 𝑑 ) ) − ( 𝑑 · ( 1 / 𝑑 ) ) ) ) |
71 |
29
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ≠ 0 ) |
72 |
68 71
|
recidd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑑 · ( 1 / 𝑑 ) ) = 1 ) |
73 |
72
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 · ( 1 / 𝑑 ) ) − ( 𝑑 · ( 1 / 𝑑 ) ) ) = ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ) |
74 |
70 73
|
eqtr2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) = ( ( 𝐴 − 𝑑 ) · ( 1 / 𝑑 ) ) ) |
75 |
|
fsumconst |
⊢ ( ( ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ∧ ( 1 / 𝑑 ) ∈ ℂ ) → Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) = ( ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) · ( 1 / 𝑑 ) ) ) |
76 |
49 69 75
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) = ( ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) · ( 1 / 𝑑 ) ) ) |
77 |
|
elfzuz3 |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) |
79 |
|
hashfz |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) → ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) = ( ( ( ⌊ ‘ 𝐴 ) − 𝑑 ) + 1 ) ) |
80 |
78 79
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) = ( ( ( ⌊ ‘ 𝐴 ) − 𝑑 ) + 1 ) ) |
81 |
34
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
82 |
81
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℂ ) |
83 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 1 ∈ ℂ ) |
84 |
82 83 68
|
addsubd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) = ( ( ( ⌊ ‘ 𝐴 ) − 𝑑 ) + 1 ) ) |
85 |
80 84
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) = ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) ) |
86 |
85
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ♯ ‘ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) · ( 1 / 𝑑 ) ) = ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) · ( 1 / 𝑑 ) ) ) |
87 |
76 86
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) = ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) − 𝑑 ) · ( 1 / 𝑑 ) ) ) |
88 |
66 74 87
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ≤ Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) |
89 |
14 48 51 88
|
fsumle |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) |
90 |
14 1 69
|
fsummulc2 |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐴 · ( 1 / 𝑑 ) ) ) |
91 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
92 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) · 1 ) ) |
93 |
14 91 92
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) · 1 ) ) |
94 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
95 |
23 94
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) = ( ⌊ ‘ 𝐴 ) ) |
96 |
95
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) · 1 ) = ( ( ⌊ ‘ 𝐴 ) · 1 ) ) |
97 |
81
|
mulid1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ⌊ ‘ 𝐴 ) · 1 ) = ( ⌊ ‘ 𝐴 ) ) |
98 |
93 96 97
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) |
99 |
90 98
|
oveq12d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) − ( ⌊ ‘ 𝐴 ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐴 · ( 1 / 𝑑 ) ) − Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) ) |
100 |
46
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 · ( 1 / 𝑑 ) ) ∈ ℂ ) |
101 |
14 100 83
|
fsumsub |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐴 · ( 1 / 𝑑 ) ) − Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) ) |
102 |
99 101
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) − ( ⌊ ‘ 𝐴 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝐴 · ( 1 / 𝑑 ) ) − 1 ) ) |
103 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
104 |
103
|
uztrn2 |
⊢ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
105 |
104
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
106 |
105
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
107 |
|
uzss |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑑 ) ) |
108 |
107
|
ad2antll |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → ( ℤ≥ ‘ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑑 ) ) |
109 |
108
|
sseld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) ) |
110 |
109
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
111 |
106 110
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) → ( ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
112 |
111
|
pm5.32da |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) ) |
113 |
|
ancom |
⊢ ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
114 |
|
an4 |
⊢ ( ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
115 |
112 113 114
|
3bitr4g |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) ) |
116 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
117 |
|
elfzuzb |
⊢ ( 𝑑 ∈ ( 1 ... 𝑛 ) ↔ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) |
118 |
116 117
|
anbi12i |
⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) ↔ ( ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ∧ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ) ) ) |
119 |
|
elfzuzb |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) ) |
120 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
121 |
119 120
|
anbi12i |
⊢ ( ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ( 𝑑 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑑 ) ) ∧ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑑 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) ) ) |
122 |
115 118 121
|
3bitr4g |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) ↔ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ) ) ) |
123 |
18
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑑 ) ∈ ℂ ) |
124 |
123
|
anasss |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ ( 1 ... 𝑛 ) ) ) → ( 1 / 𝑑 ) ∈ ℂ ) |
125 |
14 14 15 122 124
|
fsumcom2 |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ ( 𝑑 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) |
126 |
89 102 125
|
3brtr4d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑑 ) ) − ( ⌊ ‘ 𝐴 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ) |
127 |
13 35 20 43 126
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ) |
128 |
26 34
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
129 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
130 |
129
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
131 |
130
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
132 |
131
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
133 |
|
peano2re |
⊢ ( ( log ‘ 𝑛 ) ∈ ℝ → ( ( log ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
134 |
132 133
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( log ‘ 𝑛 ) + 1 ) ∈ ℝ ) |
135 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
136 |
|
flid |
⊢ ( 𝑛 ∈ ℤ → ( ⌊ ‘ 𝑛 ) = 𝑛 ) |
137 |
135 136
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( ⌊ ‘ 𝑛 ) = 𝑛 ) |
138 |
137
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... ( ⌊ ‘ 𝑛 ) ) = ( 1 ... 𝑛 ) ) |
139 |
138
|
sumeq1d |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( 1 / 𝑑 ) = Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ) |
140 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
141 |
|
nnge1 |
⊢ ( 𝑛 ∈ ℕ → 1 ≤ 𝑛 ) |
142 |
|
harmonicubnd |
⊢ ( ( 𝑛 ∈ ℝ ∧ 1 ≤ 𝑛 ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( 1 / 𝑑 ) ≤ ( ( log ‘ 𝑛 ) + 1 ) ) |
143 |
140 141 142
|
syl2anc |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑛 ) ) ( 1 / 𝑑 ) ≤ ( ( log ‘ 𝑛 ) + 1 ) ) |
144 |
139 143
|
eqbrtrrd |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ≤ ( ( log ‘ 𝑛 ) + 1 ) ) |
145 |
130 144
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ≤ ( ( log ‘ 𝑛 ) + 1 ) ) |
146 |
14 19 134 145
|
fsumle |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) + 1 ) ) |
147 |
132
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
148 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 1 ∈ ℂ ) |
149 |
14 147 148
|
fsumadd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) + 1 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) ) |
150 |
|
logfac |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) ) |
151 |
23 150
|
syl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) ) |
152 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) · 1 ) ) |
153 |
14 91 152
|
sylancl |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) · 1 ) ) |
154 |
153 96 97
|
3eqtrrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ⌊ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) |
155 |
151 154
|
oveq12d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + ( ⌊ ‘ 𝐴 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( log ‘ 𝑛 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 1 ) ) |
156 |
149 155
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( log ‘ 𝑛 ) + 1 ) = ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + ( ⌊ ‘ 𝐴 ) ) ) |
157 |
146 156
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ≤ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + ( ⌊ ‘ 𝐴 ) ) ) |
158 |
34 8 26 42
|
leadd2dd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + ( ⌊ ‘ 𝐴 ) ) ≤ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + 𝐴 ) ) |
159 |
20 128 27 157 158
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑑 ) ≤ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + 𝐴 ) ) |
160 |
13 20 27 127 159
|
letrd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) ≤ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + 𝐴 ) ) |
161 |
13 8 26
|
lesubaddd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) − 𝐴 ) ≤ ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) ≤ ( ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) + 𝐴 ) ) ) |
162 |
160 161
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 · ( log ‘ 𝐴 ) ) − 𝐴 ) − 𝐴 ) ≤ ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
163 |
12 162
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 · ( ( log ‘ 𝐴 ) − 2 ) ) ≤ ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |