Step |
Hyp |
Ref |
Expression |
1 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
2 |
|
logexprlim |
⊢ ( 1 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 1 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 1 ) |
4 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
5 |
4
|
nnrpd |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ ) |
6 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
8 |
7
|
relogcld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
10 |
9
|
exp1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
11 |
10
|
sumeq2dv |
⊢ ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) |
13 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
14 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
15 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
16 |
13 14 9 15
|
fsumdivc |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) |
17 |
12 16
|
eqtrd |
⊢ ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) |
18 |
17
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) |
19 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
20 |
3 18 19
|
3brtr3i |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) ⇝𝑟 1 |