Metamath Proof Explorer


Theorem logfacrlim2

Description: Write out logfacrlim as a sum of logs. (Contributed by Mario Carneiro, 18-May-2016) (Revised by Mario Carneiro, 22-May-2016)

Ref Expression
Assertion logfacrlim2 ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) ⇝𝑟 1

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 logexprlim ( 1 ∈ ℕ0 → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 1 ) )
3 1 2 ax-mp ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) ⇝𝑟 ( ! ‘ 1 )
4 elfznn ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ )
5 4 nnrpd ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℝ+ )
6 rpdivcl ( ( 𝑥 ∈ ℝ+𝑛 ∈ ℝ+ ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
7 5 6 sylan2 ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ )
8 7 relogcld ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ )
9 8 recnd ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ )
10 9 exp1d ( ( 𝑥 ∈ ℝ+𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) = ( log ‘ ( 𝑥 / 𝑛 ) ) )
11 10 sumeq2dv ( 𝑥 ∈ ℝ+ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) )
12 11 oveq1d ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) )
13 fzfid ( 𝑥 ∈ ℝ+ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin )
14 rpcn ( 𝑥 ∈ ℝ+𝑥 ∈ ℂ )
15 rpne0 ( 𝑥 ∈ ℝ+𝑥 ≠ 0 )
16 13 14 9 15 fsumdivc ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) )
17 12 16 eqtrd ( 𝑥 ∈ ℝ+ → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) )
18 17 mpteq2ia ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) ↑ 1 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) )
19 fac1 ( ! ‘ 1 ) = 1
20 3 18 19 3brtr3i ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑛 ) ) / 𝑥 ) ) ⇝𝑟 1