| Step | Hyp | Ref | Expression | 
						
							| 1 |  | logimcld.1 | ⊢ ( 𝜑  →  𝑋  ∈  ℂ ) | 
						
							| 2 |  | logimcld.2 | ⊢ ( 𝜑  →  𝑋  ≠  0 ) | 
						
							| 3 | 1 2 | logcld | ⊢ ( 𝜑  →  ( log ‘ 𝑋 )  ∈  ℂ ) | 
						
							| 4 | 3 | imcld | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℝ ) | 
						
							| 5 | 1 2 | logimcld | ⊢ ( 𝜑  →  ( - π  <  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑋 ) )  ≤  π ) ) | 
						
							| 6 | 5 | simpld | ⊢ ( 𝜑  →  - π  <  ( ℑ ‘ ( log ‘ 𝑋 ) ) ) | 
						
							| 7 | 5 | simprd | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝑋 ) )  ≤  π ) | 
						
							| 8 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 9 | 8 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 10 | 9 | rexri | ⊢ - π  ∈  ℝ* | 
						
							| 11 |  | elioc2 | ⊢ ( ( - π  ∈  ℝ*  ∧  π  ∈  ℝ )  →  ( ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ( - π (,] π )  ↔  ( ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑋 ) )  ≤  π ) ) ) | 
						
							| 12 | 10 8 11 | mp2an | ⊢ ( ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ( - π (,] π )  ↔  ( ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ℝ  ∧  - π  <  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∧  ( ℑ ‘ ( log ‘ 𝑋 ) )  ≤  π ) ) | 
						
							| 13 | 4 6 7 12 | syl3anbrc | ⊢ ( 𝜑  →  ( ℑ ‘ ( log ‘ 𝑋 ) )  ∈  ( - π (,] π ) ) |