Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
3 |
|
ax-icn |
⊢ i ∈ ℂ |
4 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
5 |
4
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
6 |
3 5
|
mulcli |
⊢ ( i · ( π / 2 ) ) ∈ ℂ |
7 |
|
efadd |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) ) |
8 |
2 6 7
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) ) |
9 |
|
eflog |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
10 |
9
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( log ‘ 𝐴 ) ) = 𝐴 ) |
11 |
|
efhalfpi |
⊢ ( exp ‘ ( i · ( π / 2 ) ) ) = i |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( π / 2 ) ) ) = i ) |
13 |
10 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( exp ‘ ( log ‘ 𝐴 ) ) · ( exp ‘ ( i · ( π / 2 ) ) ) ) = ( 𝐴 · i ) ) |
14 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
15 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝐴 · i ) = ( i · 𝐴 ) ) |
16 |
14 3 15
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 𝐴 · i ) = ( i · 𝐴 ) ) |
17 |
8 13 16
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( i · 𝐴 ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( log ‘ ( i · 𝐴 ) ) ) |
19 |
|
addcl |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ) |
20 |
2 6 19
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ) |
21 |
|
pire |
⊢ π ∈ ℝ |
22 |
21
|
renegcli |
⊢ - π ∈ ℝ |
23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π ∈ ℝ ) |
24 |
2
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
25 |
|
readdcl |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ∈ ℝ ) |
26 |
24 4 25
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ∈ ℝ ) |
27 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
28 |
27
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
29 |
28
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
30 |
|
pirp |
⊢ π ∈ ℝ+ |
31 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
32 |
30 31
|
ax-mp |
⊢ ( π / 2 ) ∈ ℝ+ |
33 |
|
ltaddrp |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ+ ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
34 |
24 32 33
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
35 |
23 24 26 29 34
|
lttrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
36 |
|
imadd |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( π / 2 ) ) ∈ ℂ ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) |
37 |
2 6 36
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) ) |
38 |
|
reim |
⊢ ( ( π / 2 ) ∈ ℂ → ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) ) |
39 |
5 38
|
ax-mp |
⊢ ( ℜ ‘ ( π / 2 ) ) = ( ℑ ‘ ( i · ( π / 2 ) ) ) |
40 |
|
rere |
⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) |
41 |
4 40
|
ax-mp |
⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
42 |
39 41
|
eqtr3i |
⊢ ( ℑ ‘ ( i · ( π / 2 ) ) ) = ( π / 2 ) |
43 |
42
|
oveq2i |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( ℑ ‘ ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) |
44 |
37 43
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) = ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ) |
45 |
35 44
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) |
46 |
|
argrege0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
47 |
4
|
renegcli |
⊢ - ( π / 2 ) ∈ ℝ |
48 |
47 4
|
elicc2i |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
49 |
48
|
simp3bi |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
50 |
46 49
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
51 |
21
|
recni |
⊢ π ∈ ℂ |
52 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
53 |
51 5 5 52
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
54 |
50 53
|
breqtrrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) |
55 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( π / 2 ) ∈ ℝ ) |
56 |
21
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → π ∈ ℝ ) |
57 |
|
leaddsub |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) ) |
58 |
24 55 56 57
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ↔ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π − ( π / 2 ) ) ) ) |
59 |
54 58
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) + ( π / 2 ) ) ≤ π ) |
60 |
44 59
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ≤ π ) |
61 |
|
ellogrn |
⊢ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log ↔ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ℂ ∧ - π < ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ∧ ( ℑ ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ≤ π ) ) |
62 |
20 45 60 61
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log ) |
63 |
|
logef |
⊢ ( ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ∈ ran log → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |
64 |
62 63
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( exp ‘ ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |
65 |
18 64
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ ( i · 𝐴 ) ) = ( ( log ‘ 𝐴 ) + ( i · ( π / 2 ) ) ) ) |