Step |
Hyp |
Ref |
Expression |
1 |
|
logltb |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐴 ∈ ℝ+ ) → ( 𝐵 < 𝐴 ↔ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
2 |
1
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐵 < 𝐴 ↔ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
3 |
2
|
notbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
4 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
5 |
|
rpre |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ ) |
6 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
8 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
9 |
|
relogcl |
⊢ ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ ) |
10 |
|
lenlt |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ↔ ¬ ( log ‘ 𝐵 ) < ( log ‘ 𝐴 ) ) ) |
12 |
3 7 11
|
3bitr4d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |