Metamath Proof Explorer
Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
relogcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
|
|
relogmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
Assertion |
logled |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
relogcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
relogmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
logleb |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ≤ 𝐵 ↔ ( log ‘ 𝐴 ) ≤ ( log ‘ 𝐵 ) ) ) |