Metamath Proof Explorer


Theorem loglt1b

Description: The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion loglt1b ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < 1 ↔ 𝐴 < e ) )

Proof

Step Hyp Ref Expression
1 epr e ∈ ℝ+
2 logltb ( ( 𝐴 ∈ ℝ+ ∧ e ∈ ℝ+ ) → ( 𝐴 < e ↔ ( log ‘ 𝐴 ) < ( log ‘ e ) ) )
3 1 2 mpan2 ( 𝐴 ∈ ℝ+ → ( 𝐴 < e ↔ ( log ‘ 𝐴 ) < ( log ‘ e ) ) )
4 loge ( log ‘ e ) = 1
5 4 a1i ( 𝐴 ∈ ℝ+ → ( log ‘ e ) = 1 )
6 5 breq2d ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < ( log ‘ e ) ↔ ( log ‘ 𝐴 ) < 1 ) )
7 3 6 bitr2d ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < 1 ↔ 𝐴 < e ) )