Description: The logarithm of a number is less than 1 iff the number is less than Euler's constant. (Contributed by AV, 30-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | loglt1b | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < 1 ↔ 𝐴 < e ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epr | ⊢ e ∈ ℝ+ | |
2 | logltb | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ e ∈ ℝ+ ) → ( 𝐴 < e ↔ ( log ‘ 𝐴 ) < ( log ‘ e ) ) ) | |
3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 < e ↔ ( log ‘ 𝐴 ) < ( log ‘ e ) ) ) |
4 | loge | ⊢ ( log ‘ e ) = 1 | |
5 | 4 | a1i | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ e ) = 1 ) |
6 | 5 | breq2d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < ( log ‘ e ) ↔ ( log ‘ 𝐴 ) < 1 ) ) |
7 | 3 6 | bitr2d | ⊢ ( 𝐴 ∈ ℝ+ → ( ( log ‘ 𝐴 ) < 1 ↔ 𝐴 < e ) ) |